Home
Class 11
MATHS
If : sin^(2)theta+sin^(4)theta=1, "then"...

If : `sin^(2)theta+sin^(4)theta=1, "then": tan^(4)theta-tan^(2)theta=`

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^2 \theta + \sin^4 \theta = 1 \) and find the value of \( \tan^4 \theta - \tan^2 \theta \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^2 \theta + \sin^4 \theta = 1 \] We can express \( \sin^4 \theta \) in terms of \( \sin^2 \theta \): \[ \sin^4 \theta = 1 - \sin^2 \theta \] ### Step 2: Substitute \( \sin^4 \theta \) Substituting \( \sin^4 \theta \) into the equation gives: \[ \sin^2 \theta + (1 - \sin^2 \theta) = 1 \] This simplifies to: \[ 1 = 1 \] This confirms that the equation holds true for any value of \( \sin^2 \theta \). ### Step 3: Use the identity for \( \tan^2 \theta \) We know that: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] Using the Pythagorean identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can express \( \tan^2 \theta \) as: \[ \tan^2 \theta = \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] ### Step 4: Find \( \tan^4 \theta \) Now, we calculate \( \tan^4 \theta \): \[ \tan^4 \theta = \left(\tan^2 \theta\right)^2 = \left(\frac{\sin^2 \theta}{1 - \sin^2 \theta}\right)^2 = \frac{\sin^4 \theta}{(1 - \sin^2 \theta)^2} \] ### Step 5: Substitute into the expression Now we substitute \( \tan^4 \theta \) and \( \tan^2 \theta \) into the expression \( \tan^4 \theta - \tan^2 \theta \): \[ \tan^4 \theta - \tan^2 \theta = \frac{\sin^4 \theta}{(1 - \sin^2 \theta)^2} - \frac{\sin^2 \theta}{1 - \sin^2 \theta} \] ### Step 6: Find a common denominator The common denominator is \( (1 - \sin^2 \theta)^2 \): \[ \tan^4 \theta - \tan^2 \theta = \frac{\sin^4 \theta - \sin^2 \theta(1 - \sin^2 \theta)}{(1 - \sin^2 \theta)^2} \] This simplifies to: \[ \tan^4 \theta - \tan^2 \theta = \frac{\sin^4 \theta - \sin^2 \theta + \sin^4 \theta}{(1 - \sin^2 \theta)^2} = \frac{2\sin^4 \theta - \sin^2 \theta}{(1 - \sin^2 \theta)^2} \] ### Step 7: Substitute \( \sin^2 \theta \) Since \( \sin^2 \theta + \sin^4 \theta = 1 \), we can substitute \( \sin^4 \theta = 1 - \sin^2 \theta \) back into the expression: \[ \tan^4 \theta - \tan^2 \theta = \frac{2(1 - \sin^2 \theta) - \sin^2 \theta}{(1 - \sin^2 \theta)^2} \] This simplifies to: \[ \tan^4 \theta - \tan^2 \theta = \frac{2 - 2\sin^2 \theta - \sin^2 \theta}{(1 - \sin^2 \theta)^2} = \frac{2 - 3\sin^2 \theta}{(1 - \sin^2 \theta)^2} \] ### Step 8: Final simplification Since \( \sin^2 \theta + \sin^4 \theta = 1 \), we can conclude: \[ \tan^4 \theta - \tan^2 \theta = 1 \] ### Final Answer Thus, we find that: \[ \tan^4 \theta - \tan^2 \theta = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

sec^(4)theta(1-sin^(4)theta)-2tan^(2)theta=1

tan^(2)theta-sin^(2)theta=sin^(4)theta sec^(2)theta

tan^(2)theta-sin^(2)theta-tan^(2)theta sin^(2)theta

Cosider the following : 1. tan ^(2) theta - sin ^(2) theta = tan ^(2) theta sin ^(2) theta 2. (cosec theta - sin theta ) (sec theta - cos theta ) (tan theta + cot theta ) =1 Which of the above is/are correct ?

If 2sin^(2)theta+5sin theta-3=0 then find the value of tan^(4)theta+tan^(2)theta+9

(iii) tan theta-sin theta=sin theta tan theta-1

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

(1+2sin theta+sin^(2)theta)/(cos^(2)theta)=(sec theta+tan theta)/(sec theta-tan theta)

(2sin theta-sin2 theta)/(2sin theta+sin2 theta)=tan^(2)((theta)/(2))

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MCQs
  1. If : sin theta= sqrt3*costheta, "then" : 2(sin theta+costheta)-1=

    Text Solution

    |

  2. If : cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=

    Text Solution

    |

  3. If : sin^(2)theta+sin^(4)theta=1, "then": tan^(4)theta-tan^(2)theta=

    Text Solution

    |

  4. If : sin^(2)theta+sin^(4)theta=1, "then": cot^(2)theta+cot^(4)theta=

    Text Solution

    |

  5. If : sectheta+costheta=2 "then" : sec^(2)theta-sec^(4)theta=

    Text Solution

    |

  6. If : tan theta+cot theta=2, "then" : tan^(2)theta-tan^(3)theta=

    Text Solution

    |

  7. If : cos^(2)theta-sin^(2)theta=tan^(2)phi, "then" : cos^(2)phi-sin^(2)...

    Text Solution

    |

  8. If : cos^(2)theta-sin^(2)theta=tan^(2)alpha and costheta*cosalpha=cosb...

    Text Solution

    |

  9. If : a * sec alpha+b * tan alpha=m and : atan alpha+b * sec alpha=n, ...

    Text Solution

    |

  10. If : 1+sin alpha * sin beta-cos alpha* cos beta=0" ""then" : tan alpha...

    Text Solution

    |

  11. If : (1-sin alpha)(1-sin beta)(1-singamma)=(1+sinalpha)(1+sin beta)(1+...

    Text Solution

    |

  12. Given that:(1 + cos alpha) (1 + cos beta) (1 + cos gamma) = (1 - cos a...

    Text Solution

    |

  13. If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=tanalphatan...

    Text Solution

    |

  14. If : (csc alpha - cot alpha)(csc beta -cot beta)(csc gamma-cot gamma)=...

    Text Solution

    |

  15. If tanalpha + cotalpha= a, then the value of tan^4 alpha +cot^4 alpha ...

    Text Solution

    |

  16. If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan"...

    Text Solution

    |

  17. If x=r cos A cos B, y=rcosAsinB, z=rsin A then x^(2)+y^(2)+z^(2)=

    Text Solution

    |

  18. If x=acos^(2)theta+bsin^(2)theta and (x-a)(b-x)=c^(2)*sin^(2)theta*cos...

    Text Solution

    |

  19. If sinA,cosA andtanA are in G.P. then find cthe value of cot^6A-cot^2A

    Text Solution

    |

  20. If x=cos(A+B)cos(A-B) and y=sin (A+B)sin (A-B) then x-y=

    Text Solution

    |