Home
Class 11
MATHS
If : sin^(2)theta+sin^(4)theta=1, "then"...

If : `sin^(2)theta+sin^(4)theta=1, "then": cot^(2)theta+cot^(4)theta=`

A

-1

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: ### Step 1: Start with the given equation We have: \[ \sin^2 \theta + \sin^4 \theta = 1 \] ### Step 2: Rewrite \(\sin^4 \theta\) We can express \(\sin^4 \theta\) in terms of \(\sin^2 \theta\): \[ \sin^4 \theta = (\sin^2 \theta)^2 \] So, we can rewrite the equation as: \[ \sin^2 \theta + (\sin^2 \theta)^2 = 1 \] ### Step 3: Let \(x = \sin^2 \theta\) Let \(x = \sin^2 \theta\). Then the equation becomes: \[ x + x^2 = 1 \] ### Step 4: Rearrange the equation Rearranging gives us: \[ x^2 + x - 1 = 0 \] ### Step 5: Solve the quadratic equation We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = 1\), and \(c = -1\): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ x = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 6: Determine \(\sin^2 \theta\) Since \(x = \sin^2 \theta\) must be non-negative, we take the positive root: \[ \sin^2 \theta = \frac{-1 + \sqrt{5}}{2} \] ### Step 7: Find \(\cos^2 \theta\) Using the Pythagorean identity: \[ \cos^2 \theta = 1 - \sin^2 \theta \] Substituting the value of \(\sin^2 \theta\): \[ \cos^2 \theta = 1 - \frac{-1 + \sqrt{5}}{2} = \frac{2 + 1 - \sqrt{5}}{2} = \frac{3 - \sqrt{5}}{2} \] ### Step 8: Calculate \(\cot^2 \theta\) We know that: \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] Substituting the values we found: \[ \cot^2 \theta = \frac{\frac{3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}} = \frac{3 - \sqrt{5}}{-1 + \sqrt{5}} \] ### Step 9: Simplify \(\cot^2 \theta\) To simplify: \[ \cot^2 \theta = \frac{(3 - \sqrt{5})(-1 - \sqrt{5})}{(-1 + \sqrt{5})(-1 - \sqrt{5})} \] Calculating the denominator: \[ (-1 + \sqrt{5})(-1 - \sqrt{5}) = 1 - 5 = -4 \] Calculating the numerator: \[ (3 - \sqrt{5})(-1 - \sqrt{5}) = -3 - 3\sqrt{5} + \sqrt{5} + 5 = 2 - 2\sqrt{5} \] Thus: \[ \cot^2 \theta = \frac{2 - 2\sqrt{5}}{-4} = \frac{1 - \sqrt{5}}{-2} = \frac{\sqrt{5} - 1}{2} \] ### Step 10: Find \(\cot^4 \theta\) Now, we need to find \(\cot^4 \theta\): \[ \cot^4 \theta = \left(\cot^2 \theta\right)^2 = \left(\frac{\sqrt{5} - 1}{2}\right)^2 = \frac{(\sqrt{5} - 1)^2}{4} = \frac{5 - 2\sqrt{5} + 1}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 11: Calculate \(\cot^2 \theta + \cot^4 \theta\) Finally, we can find: \[ \cot^2 \theta + \cot^4 \theta = \frac{\sqrt{5} - 1}{2} + \frac{3 - \sqrt{5}}{2} = \frac{(\sqrt{5} - 1) + (3 - \sqrt{5})}{2} = \frac{2}{2} = 1 \] ### Final Answer Thus, the required value of \(\cot^2 \theta + \cot^4 \theta\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (i) sin^(6) theta + cos^(6)theta = 1- 3 sin^(2) theta cos^(2) theta (ii) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (iii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Show that ((1 + cos theta - sin ^(2) theta)/( sin theta (1 + cos theta ))) = cot theta

(cos^(2)theta-cot^(2)theta+1)/(sin^(2)theta+tan^(2)theta-1)=cot^(2)theta

(cosec theta+sin theta)(cosec theta-sin theta)=cot^(2)theta+cos^(2)theta

Prove each of the following identities : (1+ tan^(2) theta)(1+ cot^(2) theta)=(1)/((sin^(2) theta- sin^(4) theta))

Solve sin^(2)theta tan theta+cos^(2)theta cot theta-sin2 theta=1+tan theta+cot theta

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

(sin theta" cosec "theta tan theta cot theta)/(sin^(2)theta+cos^(2)theta)

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MCQs
  1. If : cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=

    Text Solution

    |

  2. If : sin^(2)theta+sin^(4)theta=1, "then": tan^(4)theta-tan^(2)theta=

    Text Solution

    |

  3. If : sin^(2)theta+sin^(4)theta=1, "then": cot^(2)theta+cot^(4)theta=

    Text Solution

    |

  4. If : sectheta+costheta=2 "then" : sec^(2)theta-sec^(4)theta=

    Text Solution

    |

  5. If : tan theta+cot theta=2, "then" : tan^(2)theta-tan^(3)theta=

    Text Solution

    |

  6. If : cos^(2)theta-sin^(2)theta=tan^(2)phi, "then" : cos^(2)phi-sin^(2)...

    Text Solution

    |

  7. If : cos^(2)theta-sin^(2)theta=tan^(2)alpha and costheta*cosalpha=cosb...

    Text Solution

    |

  8. If : a * sec alpha+b * tan alpha=m and : atan alpha+b * sec alpha=n, ...

    Text Solution

    |

  9. If : 1+sin alpha * sin beta-cos alpha* cos beta=0" ""then" : tan alpha...

    Text Solution

    |

  10. If : (1-sin alpha)(1-sin beta)(1-singamma)=(1+sinalpha)(1+sin beta)(1+...

    Text Solution

    |

  11. Given that:(1 + cos alpha) (1 + cos beta) (1 + cos gamma) = (1 - cos a...

    Text Solution

    |

  12. If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=tanalphatan...

    Text Solution

    |

  13. If : (csc alpha - cot alpha)(csc beta -cot beta)(csc gamma-cot gamma)=...

    Text Solution

    |

  14. If tanalpha + cotalpha= a, then the value of tan^4 alpha +cot^4 alpha ...

    Text Solution

    |

  15. If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan"...

    Text Solution

    |

  16. If x=r cos A cos B, y=rcosAsinB, z=rsin A then x^(2)+y^(2)+z^(2)=

    Text Solution

    |

  17. If x=acos^(2)theta+bsin^(2)theta and (x-a)(b-x)=c^(2)*sin^(2)theta*cos...

    Text Solution

    |

  18. If sinA,cosA andtanA are in G.P. then find cthe value of cot^6A-cot^2A

    Text Solution

    |

  19. If x=cos(A+B)cos(A-B) and y=sin (A+B)sin (A-B) then x-y=

    Text Solution

    |

  20. If x=sin((pi)/(3)+A)*cos((pi)/(3)+B) and y=cos((pi)/(3)+A)*sin ((pi)/(...

    Text Solution

    |