Home
Class 11
MATHS
cot ((A)/(2))-tan((A)/(2))= A)2 sin AB)2...

`cot ((A)/(2))-tan((A)/(2))=` A)`2 sin A`B)`2 cos A`C)`2 tan A`D)`2 cot A`

A

`2 sin A`

B

`2 cos A`

C

`2 tan A`

D

`2 cot A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot\left(\frac{A}{2}\right) - \tan\left(\frac{A}{2}\right) \), we will follow these steps: ### Step 1: Rewrite cotangent and tangent in terms of sine and cosine We know that: \[ \cot\left(\frac{A}{2}\right) = \frac{\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)} \] \[ \tan\left(\frac{A}{2}\right) = \frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} \] ### Step 2: Substitute these into the expression Substituting these definitions into the expression gives: \[ \cot\left(\frac{A}{2}\right) - \tan\left(\frac{A}{2}\right) = \frac{\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)} - \frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} \] ### Step 3: Find a common denominator The common denominator for the two fractions is \( \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) \). Thus, we can rewrite the expression as: \[ \frac{\cos^2\left(\frac{A}{2}\right) - \sin^2\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right)} \] ### Step 4: Use trigonometric identities Using the identity \( \cos^2\theta - \sin^2\theta = \cos(2\theta) \), we can simplify the numerator: \[ \cos^2\left(\frac{A}{2}\right) - \sin^2\left(\frac{A}{2}\right) = \cos(A) \] Thus, the expression becomes: \[ \frac{\cos(A)}{\sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right)} \] ### Step 5: Simplify the denominator using the double angle identity Using the identity \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \), we have: \[ \sin(A) = 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) \] So, we can rewrite the expression as: \[ \frac{\cos(A)}{\frac{1}{2} \sin(A)} = \frac{2 \cos(A)}{\sin(A)} \] ### Step 6: Rewrite in terms of cotangent Finally, we can express this as: \[ 2 \cot(A) \] ### Final Answer Thus, the value of \( \cot\left(\frac{A}{2}\right) - \tan\left(\frac{A}{2}\right) \) is: \[ \boxed{2 \cot(A)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

cot A=(1)/(2)(cot((A)/(2))-tan((A)/(2)))

Consider the following for triangle ABC : 1. sin((B+C)/(2))=cos((A)/(2)) 2. tan((B+C)/(2))=cot((A)/(2)) 3. sin (B + C) = cos A 4. tan(B + C) = -cot A Which of the above are correct ?

tan A-cot A=-2cot2A

In Delta ABC, prove that: (cot((A)/(2))+cot((B)/(2)))(a sin^(2)((B)/(2))+b sin^(2)((A)/(2)))=c cot((C)/(2))

In any Delta ABC(i)tan((B-C)/(2))=((b-c)/(b+c))(cot A)/(2)(ii)tan((A-B)/(2))=((a-b)/(a+b))(cot C)/(2)(iii)tan((C-A)/(2))=((c-a)/(c+a))(cot B)/(2)

Prove the trigonometric identities: (1+cot A+tan A)(sin A-cos A)=(sec A)/(cos ec^(2)A)-(cos ecA)/(sec^(2)A)=sin A tan A-cot A cos A

The value of (cot((x)/(2))-tan(x)/(2))^(2)(1-2tan x cot2x) is 1 (b) 2(c)3(d)4

In triangle ABC ,prove that tan(B-C)/(2)=(b-c)/(b+c)cot(A)/(2)tan(C-A)/(2)=(c-a)/(c+a)cot(B)/(2)tan(A-B)/(2)=(a-b)/(a+b)cot(C)/(2)

In DeltaABC,cot.(A+B)/(2).tan.(A-B)/(2) =

(tan A)/((1+tan^(2)A)^(2))+(cot A)/((1+cot^(2)A)^(2))=sin A cos A

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MCQs
  1. sin 2 theta * (tan theta + cot theta)= A)sec thetaB)csc thetaC)1D)2

    Text Solution

    |

  2. If sqrt((1-sinx)/(1+sinx))= f(pi/4-x/2) then f=

    Text Solution

    |

  3. cot ((A)/(2))-tan((A)/(2))= A)2 sin AB)2 cos AC)2 tan AD)2 cot A

    Text Solution

    |

  4. 8 sin theta * cos theta * cos 2 theta * cos 4 theta = A)sin 4 thetaB)...

    Text Solution

    |

  5. 4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A)4 cos theta...

    Text Solution

    |

  6. 1-8 cos ^(2) theta + 8 cos ^(4) theta=

    Text Solution

    |

  7. If cos 3 A + cos 5 A + cos 7 A + cos 15 A = 4 cos mA * cos n A * cos ...

    Text Solution

    |

  8. If : sin 40^(@)-cos 70^(@)= k * cos 80^(@), "then" : k = A)sqrt1B)sqr...

    Text Solution

    |

  9. sin 50 ^(@) - sin 70^(@) + sin 10^(@) A)-1B)0C)sin 5^(@)D)-sin 5^(@)

    Text Solution

    |

  10. cos 20^(@) + cos 100^(@) + cos 140^(@)= A)cos 130^(@)B)cos 45 ^(@)C)0...

    Text Solution

    |

  11. cos 55^(@) + cos 65^(@) + cos 175^(@)= A)0B)1C)sin 18^(@)D)cos 36 ^(@)

    Text Solution

    |

  12. sin 10^(@)+sin 20^(@) + sin 40 ^(@) + sin 50 = A)sin 15^(@) +sin 75^(@...

    Text Solution

    |

  13. (sin75^(@) - sin 15^(@))/(cos 75^(@) + cos 15^(@)) A)-sqrt3B)sqrt3C)(1...

    Text Solution

    |

  14. (cos21^(@) -sin21^(@))/(cos21^(@) + sin21^(@)) A)tan21^(@)B)cot66^(@)C...

    Text Solution

    |

  15. sin 7 theta * sin theta+sin11theta * sin 3theta= A) sin 4 theta * sin ...

    Text Solution

    |

  16. 16 * cos ""(pi)/(12) * cos"" (4pi)/(12) * cos"" (5pi)/(12)= A)sqrt1B)s...

    Text Solution

    |

  17. If : A+B+C=pi, "then" : sin 2A + sin 2 B - sin 2 C= A)4 sin A * cos B ...

    Text Solution

    |

  18. If A+B+C=pi then sin2A+sin2B+sin2C=

    Text Solution

    |

  19. If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A)2 cos A * co...

    Text Solution

    |

  20. If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A)2 cos A * ...

    Text Solution

    |