Home
Class 11
MATHS
If tan^(2)alpha=2tan^(2)beta+1, evaluate...

If `tan^(2)alpha=2tan^(2)beta+1`, evaluate : `cos 2alpha+sin^(2)beta.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan^2 \alpha = 2 \tan^2 \beta + 1 \] We need to evaluate: \[ \cos 2\alpha + \sin^2 \beta \] ### Step 1: Express \(\cos 2\alpha\) in terms of \(\tan^2 \alpha\) Using the double angle formula for cosine, we have: \[ \cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} \] ### Step 2: Substitute \(\tan^2 \alpha\) Substituting the expression for \(\tan^2 \alpha\): \[ \cos 2\alpha = \frac{1 - (2 \tan^2 \beta + 1)}{1 + (2 \tan^2 \beta + 1)} \] ### Step 3: Simplify the expression Now simplify the numerator and denominator: - **Numerator:** \[ 1 - (2 \tan^2 \beta + 1) = 1 - 2 \tan^2 \beta - 1 = -2 \tan^2 \beta \] - **Denominator:** \[ 1 + (2 \tan^2 \beta + 1) = 1 + 2 \tan^2 \beta + 1 = 2 + 2 \tan^2 \beta = 2(1 + \tan^2 \beta) \] Thus, we have: \[ \cos 2\alpha = \frac{-2 \tan^2 \beta}{2(1 + \tan^2 \beta)} = \frac{-\tan^2 \beta}{1 + \tan^2 \beta} \] ### Step 4: Use the identity for \(\tan^2 \beta\) Recall that: \[ \tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta} \] Substituting this into our expression for \(\cos 2\alpha\): \[ \cos 2\alpha = \frac{-\frac{\sin^2 \beta}{\cos^2 \beta}}{1 + \frac{\sin^2 \beta}{\cos^2 \beta}} = \frac{-\sin^2 \beta}{\cos^2 \beta + \sin^2 \beta} = \frac{-\sin^2 \beta}{1} \] Thus: \[ \cos 2\alpha = -\sin^2 \beta \] ### Step 5: Combine with \(\sin^2 \beta\) Now, we can evaluate \(\cos 2\alpha + \sin^2 \beta\): \[ \cos 2\alpha + \sin^2 \beta = -\sin^2 \beta + \sin^2 \beta = 0 \] ### Final Answer The value of \(\cos 2\alpha + \sin^2 \beta\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos

Similar Questions

Explore conceptually related problems

lf_(tan^(2)alpha)=2tan^(2)beta+1, thenthevalueof cos2 alpha+sin^(2)beta+3

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

If cos^(2)alpha+cos^(2)beta=2 , the value of tan^(3)alpha+sin^(5)beta is.

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

If tan^(2)alpha=1+2tan^(2)beta, prove that,cos2 beta=1+2cos2 alpha

The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if

tan ^ (2) alpha-tan ^ (2) beta = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha cos ^ (2) beta)

If cos^(2)alpha+cos^(2)beta=2 , then the value of tan^(3)alpha+sin^(5)beta is :

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE-MCQs
  1. If tan^(2)alpha=2tan^(2)beta+1, evaluate : cos 2alpha+sin^(2)beta.

    Text Solution

    |

  2. sin10 5^(@)+cos10 5^(@)=

    Text Solution

    |

  3. sin((pi)/(3)+A).cos((pi)/(3)+B)-cos((pi)/(3)+A).sin((pi)/(3)+B)=...

    Text Solution

    |

  4. If 0 ltA lt(pi//2)and0 ltB lt(pi//2), then angle (A-B) lies in…….. Qua...

    Text Solution

    |

  5. If 0 ltA lt(pi//2)and0 ltB lt(pi//2), then angle (A-B) lies in…….. Qua...

    Text Solution

    |

  6. If sinA=3//5 andcosB=9//41, where A,B are both in the first quadrant, ...

    Text Solution

    |

  7. If sinalpha=15//17, (pi//2) ltalpha ltpi and secbeta=13//12, (3pi//2)...

    Text Solution

    |

  8. If tanalpha=3//4 ,alpha in third quadrant, and cosbeta=9//41,beta, in ...

    Text Solution

    |

  9. If sintheta=1//2,cosphi=12//13, where theta lies in the second quadran...

    Text Solution

    |

  10. For any angles A and B, sin(A+B). sin(A-B)=......

    Text Solution

    |

  11. For any angles A and B, cos(A+B).cos(A-B)=…..

    Text Solution

    |

  12. 1+tanA.tan(A//2)=…..

    Text Solution

    |

  13. ( tan3A + tanA)/(tan3A -tan A)=..

    Text Solution

    |

  14. For any angles A,B,C. (sin(A-B))/(cosA.cosB)+(sin(B-C))/(cosB.cosC)+(s...

    Text Solution

    |

  15. sinx+cosx=sqrt2.sin(....)

    Text Solution

    |

  16. cosx-sinx=sqrt2.cos(....)

    Text Solution

    |

  17. tan20^@+tan25^@+tan20^@.tan25^@=....

    Text Solution

    |

  18. tan4 0^@+2tan1 0^@ is equal to

    Text Solution

    |

  19. If A+B=45^@ then (1+tanA)(1+tanB)=

    Text Solution

    |

  20. If 2sin(x+60^@)=cos(x-30^@), then : tan=…..

    Text Solution

    |

  21. tan(45^(@)+A)tan(45^(@)-A)=

    Text Solution

    |