Home
Class 11
MATHS
Evaluate : cosec10^@-sqrt3sec10^@...

Evaluate : `cosec10^@-sqrt3sec10^@`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \csc(10^\circ) - \sqrt{3} \sec(10^\circ) \), we can follow these steps: ### Step 1: Rewrite the expression in terms of sine and cosine We know that: \[ \csc(10^\circ) = \frac{1}{\sin(10^\circ)} \quad \text{and} \quad \sec(10^\circ) = \frac{1}{\cos(10^\circ)} \] Thus, we can rewrite the expression as: \[ \csc(10^\circ) - \sqrt{3} \sec(10^\circ) = \frac{1}{\sin(10^\circ)} - \sqrt{3} \cdot \frac{1}{\cos(10^\circ)} \] ### Step 2: Combine the fractions To combine the fractions, we need a common denominator, which is \( \sin(10^\circ) \cos(10^\circ) \): \[ \frac{1}{\sin(10^\circ)} - \frac{\sqrt{3}}{\cos(10^\circ)} = \frac{\cos(10^\circ) - \sqrt{3} \sin(10^\circ)}{\sin(10^\circ) \cos(10^\circ)} \] ### Step 3: Simplify the numerator Now we need to simplify the numerator \( \cos(10^\circ) - \sqrt{3} \sin(10^\circ) \). We can use the sine subtraction formula: \[ \cos(10^\circ) - \sqrt{3} \sin(10^\circ) = 2 \left( \frac{1}{2} \cos(10^\circ) - \frac{\sqrt{3}}{2} \sin(10^\circ) \right) \] Recognizing that \( \frac{1}{2} = \cos(60^\circ) \) and \( \frac{\sqrt{3}}{2} = \sin(60^\circ) \), we can rewrite this as: \[ 2 \left( \cos(60^\circ) \cos(10^\circ) - \sin(60^\circ) \sin(10^\circ) \right) = 2 \cos(70^\circ) \] ### Step 4: Substitute back into the expression Now substituting back into our expression, we have: \[ \frac{2 \cos(70^\circ)}{\sin(10^\circ) \cos(10^\circ)} \] ### Step 5: Use the identity for sine of double angles We know that \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \). Thus: \[ \sin(20^\circ) = 2 \sin(10^\circ) \cos(10^\circ) \] So we can rewrite the expression as: \[ \frac{2 \cos(70^\circ)}{\frac{1}{2} \sin(20^\circ)} = \frac{4 \cos(70^\circ)}{\sin(20^\circ)} \] ### Step 6: Evaluate \( \cos(70^\circ) \) and \( \sin(20^\circ) \) We know that \( \cos(70^\circ) = \sin(20^\circ) \), thus: \[ \frac{4 \sin(20^\circ)}{\sin(20^\circ)} = 4 \] ### Final Answer Thus, the value of \( \csc(10^\circ) - \sqrt{3} \sec(10^\circ) \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos ec10^(@)-sqrt(3)sec10^(@)(i)4(ii)2(ii)0(iv)-1

Evaluate : "cosec "31^(@)-sec 59^(@) .

Find the value of cosec 10^(@) - sqrt(3) sec 10^(@) .

Evaluate : 3 cos 80^@ cosec 10^@ + 2 cos 59^@ cosec 31^@

Evaluate : "cosec" 31^(@) - sec 59^(@)

The value of cosec 430 ^(@) + sqrt3 sec 470^(@) is :

Find the value of "cosec"70^(@)-sec20^(@)

find the value of sqrt3cosec20^(@)-sec20^(@)

Find the exact value of cosec"10"^(@)+"cosec"50^(@)-"cosec"70^(@)

The value of sqrt3 cosec20^@-sec20^@ is equal to: