Home
Class 11
MATHS
tan75^@+tan15^@=…....

`tan75^@+tan15^@=….`

A

`1+sqrt3`

B

`sqrt3-1`

C

`sqrt3`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 75^\circ + \tan 15^\circ \), we can use the tangent addition formula. The tangent addition formula states that: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] In this case, we can express \( 75^\circ \) and \( 15^\circ \) in terms of \( 45^\circ \) and \( 30^\circ \): \[ \tan 75^\circ = \tan(45^\circ + 30^\circ) \] \[ \tan 15^\circ = \tan(45^\circ - 30^\circ) \] Using the addition and subtraction formulas: 1. **Calculate \( \tan 75^\circ \)**: \[ \tan 75^\circ = \tan(45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ} \] Where \( \tan 45^\circ = 1 \) and \( \tan 30^\circ = \frac{1}{\sqrt{3}} \). Substituting these values: \[ \tan 75^\circ = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} \] 2. **Calculate \( \tan 15^\circ \)**: \[ \tan 15^\circ = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \] Substituting the values: \[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} \] 3. **Combine \( \tan 75^\circ \) and \( \tan 15^\circ \)**: Now we need to add these two results: \[ \tan 75^\circ + \tan 15^\circ = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} + \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} \] 4. **Finding a common denominator**: The common denominator for the two fractions is \( (1 - \frac{1}{\sqrt{3}})(1 + \frac{1}{\sqrt{3}}) \). Simplifying: \[ \tan 75^\circ + \tan 15^\circ = \frac{(1 + \frac{1}{\sqrt{3}})^2 + (1 - \frac{1}{\sqrt{3}})^2}{(1 - \frac{1}{\sqrt{3}})(1 + \frac{1}{\sqrt{3}})} \] 5. **Calculating the numerator**: Expanding the numerator: \[ (1 + \frac{1}{\sqrt{3}})^2 = 1 + 2 \cdot \frac{1}{\sqrt{3}} + \frac{1}{3} = \frac{4}{3} + \frac{2}{\sqrt{3}} \] \[ (1 - \frac{1}{\sqrt{3}})^2 = 1 - 2 \cdot \frac{1}{\sqrt{3}} + \frac{1}{3} = \frac{4}{3} - \frac{2}{\sqrt{3}} \] Adding these: \[ \frac{4}{3} + \frac{2}{\sqrt{3}} + \frac{4}{3} - \frac{2}{\sqrt{3}} = \frac{8}{3} \] 6. **Calculating the denominator**: The denominator simplifies to: \[ (1 - \frac{1}{\sqrt{3}})(1 + \frac{1}{\sqrt{3}}) = 1 - \frac{1}{3} = \frac{2}{3} \] 7. **Final calculation**: \[ \tan 75^\circ + \tan 15^\circ = \frac{\frac{8}{3}}{\frac{2}{3}} = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan15^@.tan25^@+tan25^@.tan50^@+tan50^@.tan15^@=1.

The value of cot theta.tan (90^@ -theta)-sec(90^@ - theta) cosec theta+ (sin^2 25^@+sin^2 65^@) +sqrt3(tan 5^@ tan15^@.tan30^@.tan75^@.tan85^@) is

tan 15^(@)=

tan 75^(@)+ tan 15^(@)= A)1B)2C)3D)4

Find the value of ((tan20^(@))/(cos e)c70^(@))^(2)+((cot20^(@))/(sec70^(@)))^(2)+2tan75^(@)tan45^(@)tan15^(@)

If tan 15^@=2-sqrt3 , then the value of tan15^@ cot 75^@+tan75^@ cot 15^@ is

(i) cos 15^@ (ii) cos75^@ (iii) tan15^@ (iv)tan75^@

Find tan15^(@).tan25^(@).tan45^(@).tan65^(@).tan75^(@) .

Choose the correct answer in each of the following questions: tan 10^(@) tan15^(@)tan75^(@)tan80^(@)=?

The value of tan 15^@ tan 25^@ tan 45^@ tan 65^@ tan 75^@ is

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE-MCQs
  1. If 2sin(x+60^@)=cos(x-30^@), then : tan=…..

    Text Solution

    |

  2. tan(45^(@)+A)tan(45^(@)-A)=

    Text Solution

    |

  3. tan75^@+tan15^@=….

    Text Solution

    |

  4. If A+B=90^@, then : tanA.tanB=...

    Text Solution

    |

  5. If sin(theta+phi)=2sin.(theta-phi), then : tantheta=K,tanphi, where K=...

    Text Solution

    |

  6. If sintheta=2sin(theta+2a)and tan(theta+alpha)=K.tanalpha, then : K=….

    Text Solution

    |

  7. If sin(x-60^@)=2.cos(x-30^@), then : tanx=.....

    Text Solution

    |

  8. If 3tanthetatanphi=1 then (cos(theta-phi))/(cos(theta+phi)) is

    Text Solution

    |

  9. If theta+phi=alpha,tantheta=K.tanphi andsin(theta-phi)=m.sinalpha, the...

    Text Solution

    |

  10. The value of (cot54^(@))/(tan36^(@))+(tan20^(@))/(cot70^(@)) is

    Text Solution

    |

  11. cos^2((pi)/(4)-theta)+cos^2((pi)/(4)+theta)=.....

    Text Solution

    |

  12. cot(pi/20).cot((3pi)/20)cot((5pi)/20)cot((7pi)/20)cot((9pi)/20)=....

    Text Solution

    |

  13. cos(pi/12)+sin^2((3pi)/12)+sin^2((9pi)/12)+cos((11pi)/12)=...

    Text Solution

    |

  14. Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 State...

    Text Solution

    |

  15. Find the value of sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+..............

    Text Solution

    |

  16. If sectheta=-13//5, where 90^(@) lt theta lt 180^(@),, then : sintheta...

    Text Solution

    |

  17. If costheta=3//7,and theta lies in the fourth quadrant, evaluate : sin...

    Text Solution

    |

  18. If sqrt(2+sqrt(2+2cos4x))=K. cosx, then : K=….

    Text Solution

    |

  19. For any angle A, 4sinA.sin((pi)/(3)-A).sin((pi)/(3)+A)=.....

    Text Solution

    |

  20. cos 20^@.cos 40^@.cos 60^@ cos 80^@=

    Text Solution

    |