Home
Class 11
MATHS
(sin^(2)3A)/(sin^2A)-(cos^(2)3A)/(cos^2A...

`(sin^(2)3A)/(sin^2A)-(cos^(2)3A)/(cos^2A)=`

A

`cos2A`

B

`8cos2A`

C

`1/8cos2A`

D

`1/4cos2A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin^2 3A}{\sin^2 A} - \frac{\cos^2 3A}{\cos^2 A}\), we can use the trigonometric identities for \(\sin 3A\) and \(\cos 3A\). ### Step 1: Use the triple angle identities We know the following identities: \[ \sin 3A = 3\sin A - 4\sin^3 A \] \[ \cos 3A = 4\cos^3 A - 3\cos A \] ### Step 2: Substitute the identities into the expression Substituting these identities into the expression gives: \[ \frac{(3\sin A - 4\sin^3 A)^2}{\sin^2 A} - \frac{(4\cos^3 A - 3\cos A)^2}{\cos^2 A} \] ### Step 3: Simplify the first term For the first term, we can factor out \(\sin^2 A\): \[ \frac{(3\sin A - 4\sin^3 A)^2}{\sin^2 A} = \frac{(3 - 4\sin^2 A)^2 \sin^2 A}{\sin^2 A} = (3 - 4\sin^2 A)^2 \] ### Step 4: Simplify the second term For the second term, we can factor out \(\cos^2 A\): \[ \frac{(4\cos^3 A - 3\cos A)^2}{\cos^2 A} = \frac{(4\cos^2 A - 3)^2 \cos^2 A}{\cos^2 A} = (4\cos^2 A - 3)^2 \] ### Step 5: Combine the simplified terms Now we can combine the simplified terms: \[ (3 - 4\sin^2 A)^2 - (4\cos^2 A - 3)^2 \] ### Step 6: Use the difference of squares This expression can be simplified using the difference of squares: \[ (a^2 - b^2) = (a - b)(a + b) \] Let \(a = 3 - 4\sin^2 A\) and \(b = 4\cos^2 A - 3\): \[ (3 - 4\sin^2 A - (4\cos^2 A - 3))(3 - 4\sin^2 A + (4\cos^2 A - 3)) \] ### Step 7: Simplify both factors 1. **First factor**: \[ 3 - 4\sin^2 A - 4\cos^2 A + 3 = 6 - 4(\sin^2 A + \cos^2 A) = 6 - 4 = 2 \] 2. **Second factor**: \[ 3 - 4\sin^2 A + 4\cos^2 A - 3 = -4\sin^2 A + 4\cos^2 A = 4(\cos^2 A - \sin^2 A) \] ### Step 8: Final expression Thus, the expression simplifies to: \[ 2 \cdot 4(\cos^2 A - \sin^2 A) = 8(\cos^2 A - \sin^2 A) \] ### Final Answer The final answer is: \[ 8(\cos^2 A - \sin^2 A) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos

Similar Questions

Explore conceptually related problems

(sin^(2)3A)/(sin^(2)A)-(cos^(2)3A)/(cos^(2)A)=

Show that (sin3A)/(sin A)-(cos3A)/(cos A)=2

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

sin^(3)A sin3A+cos^(3)A cos3A=cos^(3)(2A)

If tan((2 pi)/(3)-x)=(sin(2(pi)/(3)-sin2x))/(cos(2(pi)/(3)-cos2x)) where 0

sin^6A+cos^6A+3sin^2A.cos^2A=

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

((1-sin A cos A) (sin ^ (2) A-cos ^ (2) A)) / (cos A (sec A-cos ecA) (sin ^ (3) A + cos ^ (3) A ))

(sin^(3)A+cos^(3)A)/(sin A+cos A)+(sin^(3)A-cos^(3)A)/(sin A-cos A)=2

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE-MCQs
  1. If, in a DeltaABC,tanA=1andtanB=2, then: tanC= (a) 1 (b) 2 (c) 3 (d) 4

    Text Solution

    |

  2. If, in a DeltaABC,tanA=1andtanB=2, then: tanC=

    Text Solution

    |

  3. The value of sin^2 75^0-sin^2 15^0 is 1//2 b. sqrt(3)//2 c. 1 d. 0

    Text Solution

    |

  4. If DeltaABC is a right-angled at A, then: cos^2B+cos^2C=

    Text Solution

    |

  5. sin^6A+cos^6A+3sin^2A.cos^2A=

    Text Solution

    |

  6. If cos(A-B)=3/5and tan A tanB=2, then

    Text Solution

    |

  7. If A, B, C, D be the angles of acyclic quadrilateral, show that : cosA...

    Text Solution

    |

  8. If sin.alpha/2+cos.alpha/2=1.4, then: sinalpha=

    Text Solution

    |

  9. If tanalpha+cotalpha=m then value of tan^4alpha+cot^4alpha is

    Text Solution

    |

  10. If cos theta+cos phi=a and sin theta - sin phi=b, then: 2cos(theta + p...

    Text Solution

    |

  11. If sinx+cosecx=2, then, for all n in N, the value of: sin^nx+cosec^nx=...

    Text Solution

    |

  12. If sinA+sinB+sinC=(3sqrt3)/(2). then: DeltaABC is (a) isosceles (b) ri...

    Text Solution

    |

  13. In triangle ABC, cos^2A + cos^2B - cos^2C = 1, then the triangle is ne...

    Text Solution

    |

  14. If tanx=b//a, then: acos2x+bsin2x=

    Text Solution

    |

  15. (sin^(2)3A)/(sin^2A)-(cos^(2)3A)/(cos^2A)=

    Text Solution

    |

  16. If t a ntheta1t a ntheta2=k , then ("cos"(theta1-theta2))/("cos"(theta...

    Text Solution

    |

  17. tan 5x.tan3x.tan2x=

    Text Solution

    |

  18. If a+btantheta=secthetaandb-atantheta=2sectheta, then: a^2+b^2=

    Text Solution

    |

  19. If cos25^0+sin25^0=p , then cos50^0 is sqrt(2-p^2) (b) -sqrt(2-p^2) ...

    Text Solution

    |

  20. If tan(x+y)=33 and x= tan^(-1) 3 then y will be

    Text Solution

    |