Home
Class 11
MATHS
8^(2)+9^(2)+10^(2)+ cdots +22^(2)=...

`8^(2)+9^(2)+10^(2)+ cdots +22^(2)`=

A

3656

B

3655

C

3654

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \(8^2 + 9^2 + 10^2 + \cdots + 22^2\), we can use the formula for the sum of squares of the first \(n\) natural numbers. The formula for the sum of squares is: \[ S_n = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 1: Calculate the sum of squares from \(1^2\) to \(22^2\) First, we will calculate the sum of squares from \(1^2\) to \(22^2\): - Here, \(n = 22\). Using the formula: \[ S_{22} = \frac{22(22 + 1)(2 \cdot 22 + 1)}{6} \] Calculating each part: - \(22 + 1 = 23\) - \(2 \cdot 22 + 1 = 45\) Now substituting these values into the formula: \[ S_{22} = \frac{22 \cdot 23 \cdot 45}{6} \] Calculating this step-by-step: 1. \(22 \cdot 23 = 506\) 2. \(506 \cdot 45 = 22770\) 3. Finally, divide by \(6\): \[ S_{22} = \frac{22770}{6} = 3795 \] ### Step 2: Calculate the sum of squares from \(1^2\) to \(7^2\) Next, we will calculate the sum of squares from \(1^2\) to \(7^2\): - Here, \(n = 7\). Using the formula: \[ S_{7} = \frac{7(7 + 1)(2 \cdot 7 + 1)}{6} \] Calculating each part: - \(7 + 1 = 8\) - \(2 \cdot 7 + 1 = 15\) Now substituting these values into the formula: \[ S_{7} = \frac{7 \cdot 8 \cdot 15}{6} \] Calculating this step-by-step: 1. \(7 \cdot 8 = 56\) 2. \(56 \cdot 15 = 840\) 3. Finally, divide by \(6\): \[ S_{7} = \frac{840}{6} = 140 \] ### Step 3: Calculate the sum of squares from \(8^2\) to \(22^2\) Now, we can find the sum of squares from \(8^2\) to \(22^2\) by subtracting \(S_{7}\) from \(S_{22}\): \[ S_{8 \text{ to } 22} = S_{22} - S_{7} \] Substituting the values we calculated: \[ S_{8 \text{ to } 22} = 3795 - 140 = 3655 \] ### Final Answer Thus, the sum \(8^2 + 9^2 + 10^2 + \cdots + 22^2\) is: \[ \boxed{3655} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos
  • QUESTION PAPER 2018

    MARVEL PUBLICATION|Exercise QUESTION|50 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|139 Videos

Similar Questions

Explore conceptually related problems

11^(2)+12^(2)+13^(2)+ cdots +32^(2) =

Find the remainder when 2^(2) + 22^(2) + 222^(2) + …… + (222…… 49 times)^(2) is divided by 9.

The normal to the curve 2x^(2)+y^(2)=12 at the point (2,2) cuts the curve again at (A)(-(22)/(9),-(2)/(9)) (B) ((22)/(9),(2)/(9))(C)(-2,-2)(D) none of these

If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , then S is equal to :

Subtract the sum of (8a - 6a^(2) + 9) and (-10a - 8 + 8a^(2)) from -3

[ 8- ((4^(9/4 ) sqrt(2.2 ^2))/( 2 sqrt( 2^(-2))))^(1/2) ] is equal to

I. 12x^(2)+ 11x+12 = 10x^(2) + 22x II. 13y^(2) - 18y+3=9y^(2) - 10y