Home
Class 11
MATHS
60^(2)-59^(2)+58^(2)-57^(2)+ cdots +2^(2...

`60^(2)-59^(2)+58^(2)-57^(2)+ cdots +2^(2)-1^(2)` =

A

1830

B

3180

C

1380

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 60^2 - 59^2 + 58^2 - 57^2 + \cdots + 2^2 - 1^2 \), we can use the difference of squares and rearrange the terms. Let's go through the steps systematically. ### Step 1: Group the Terms We can group the terms in pairs: \[ (60^2 - 59^2) + (58^2 - 57^2) + \cdots + (2^2 - 1^2) \] ### Step 2: Apply the Difference of Squares Formula Recall that \( a^2 - b^2 = (a - b)(a + b) \). Applying this to each pair: \[ 60^2 - 59^2 = (60 - 59)(60 + 59) = 1 \cdot 119 = 119 \] \[ 58^2 - 57^2 = (58 - 57)(58 + 57) = 1 \cdot 115 = 115 \] Continuing this pattern, we find: \[ 56^2 - 55^2 = 1 \cdot 111 = 111 \] \[ 54^2 - 53^2 = 1 \cdot 107 = 107 \] And so on, down to: \[ 2^2 - 1^2 = (2 - 1)(2 + 1) = 1 \cdot 3 = 3 \] ### Step 3: Write the Series of Results The results of the pairs can be expressed as: \[ 119 + 115 + 111 + 107 + \cdots + 3 \] ### Step 4: Identify the Sequence This is an arithmetic series where: - The first term \( a = 119 \) - The last term \( l = 3 \) - The common difference \( d = -4 \) ### Step 5: Find the Number of Terms To find the number of terms \( n \): \[ l = a + (n-1)d \] Substituting the known values: \[ 3 = 119 + (n-1)(-4) \] \[ 3 - 119 = -4(n - 1) \] \[ -116 = -4(n - 1) \] \[ n - 1 = 29 \quad \Rightarrow \quad n = 30 \] ### Step 6: Calculate the Sum of the Series The sum \( S_n \) of an arithmetic series can be calculated using the formula: \[ S_n = \frac{n}{2} (a + l) \] Substituting the values: \[ S_{30} = \frac{30}{2} (119 + 3) = 15 \cdot 122 = 1830 \] ### Final Answer Thus, the value of the expression \( 60^2 - 59^2 + 58^2 - 57^2 + \cdots + 2^2 - 1^2 \) is: \[ \boxed{1830} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos
  • QUESTION PAPER 2018

    MARVEL PUBLICATION|Exercise QUESTION|50 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|139 Videos

Similar Questions

Explore conceptually related problems

Evaluate 50^(2)-49^(2)+48^(2)-47^(2)+ cdots+2^(2)-1^(2) .

8^(2)+9^(2)+10^(2)+ cdots +22^(2) =

11^(2)+12^(2)+13^(2)+ cdots +32^(2) =

lim_(n rarr oo)(n(1^(3)+2^(3)+3^(3)+cdots n^(3))^(2))/((1^(2)+2^(2)+3^(2)+cdots+n^(2))^(3)) =

((4) / (tan ^ (2) 60 ^ (@)) + (1) / (cos ^ (2) 30 ^ (@)) - 2sin ^ (2) 45 ^ (@)) / (sin ^ (2) 60 ^ (@) + cos ^ (2) 45 ^ (@))

((4) / (tan ^ (2) 60 ^ (@)) + (1) / (cos ^ (2) 30 ^ (@)) - 2sin ^ (2) 45 ^ (@)) / (sin ^ (2) 60 ^ (@) + cos ^ (2) 45 ^ (@))

If x=sec57^(@) , then cot^(2)33^(@)+sin^(2)57^(@)+sin^(2)33^(@)+cosec^(2)57^(@)cos^(2)33^(@)+sec^(2)33^(@)sin^(2)57^(@) is equal to:

Find the sum to n terms of the series 1^(2)/(1)+(1^(2)+2^(2))/(1+2)+(1^(2)+2^(2)+3^(2))/(1+2+3)+cdots

({(4) / (tan ^ (2) 60 ^ (@)) + (1) / (cos ^ (2) 30 ^ (@)) - 2sin ^ (2) 45 ^ (@)}) / ( (sin ^ (2) 60 ^ (@) + cos ^ (2) 45 ^ (@)))

Find the value of (cos^(2)20^(@)+cos^(2)70^(@))/(sin^(2)59^(@)+sin^(2)31^(@)) .