Home
Class 11
MATHS
7^(2)+8^(2)+9^(2)+...+20^(2)=...

`7^(2)+8^(2)+9^(2)+...+20^(2)=`

A

2779

B

7279

C

7729

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 7^2 + 8^2 + 9^2 + \ldots + 20^2 \), we can use the formula for the sum of squares of the first \( n \) natural numbers. The formula is: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] ### Step 1: Calculate the sum of squares from 1 to 20 We first calculate the sum of squares from \( 1^2 \) to \( 20^2 \): \[ \sum_{k=1}^{20} k^2 = \frac{20(20+1)(2 \cdot 20 + 1)}{6} \] Calculating this step-by-step: - \( n = 20 \) - \( n + 1 = 21 \) - \( 2n + 1 = 41 \) Now substituting these values into the formula: \[ \sum_{k=1}^{20} k^2 = \frac{20 \cdot 21 \cdot 41}{6} \] ### Step 2: Simplify the calculation Now we simplify \( \frac{20 \cdot 21 \cdot 41}{6} \): 1. Calculate \( 20 \cdot 21 = 420 \) 2. Now, multiply \( 420 \cdot 41 \): \[ 420 \cdot 41 = 17220 \] 3. Divide by 6: \[ \frac{17220}{6} = 2870 \] So, \[ \sum_{k=1}^{20} k^2 = 2870 \] ### Step 3: Calculate the sum of squares from 1 to 6 Next, we calculate the sum of squares from \( 1^2 \) to \( 6^2 \): \[ \sum_{k=1}^{6} k^2 = \frac{6(6+1)(2 \cdot 6 + 1)}{6} \] Calculating this step-by-step: - \( n = 6 \) - \( n + 1 = 7 \) - \( 2n + 1 = 13 \) Substituting these values into the formula: \[ \sum_{k=1}^{6} k^2 = \frac{6 \cdot 7 \cdot 13}{6} \] ### Step 4: Simplify the calculation Now we simplify \( \frac{6 \cdot 7 \cdot 13}{6} \): 1. The \( 6 \) in the numerator and denominator cancels out: \[ 7 \cdot 13 = 91 \] So, \[ \sum_{k=1}^{6} k^2 = 91 \] ### Step 5: Calculate the sum from 7 to 20 Now we find the sum from \( 7^2 \) to \( 20^2 \): \[ \sum_{k=7}^{20} k^2 = \sum_{k=1}^{20} k^2 - \sum_{k=1}^{6} k^2 \] Substituting the values we calculated: \[ \sum_{k=7}^{20} k^2 = 2870 - 91 = 2779 \] ### Final Answer Thus, the value of \( 7^2 + 8^2 + 9^2 + \ldots + 20^2 \) is: \[ \boxed{2779} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos
  • QUESTION PAPER 2018

    MARVEL PUBLICATION|Exercise QUESTION|50 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|139 Videos

Similar Questions

Explore conceptually related problems

(1^(2)-2^(2)+3^(2)) + (4^(2)-5^(2)+6^(2))+(7^(2)-8^(2)+9^(2))….30 terms

Solve (9x+7xy +9x^(2)) + (8+x^(2) -xy -y^(2)+1) .

The domain of the function (x^(2) + 8x + 9)/(x^(2) - 9x + 20) is

Write the n terms of the series (3)/(7.11^(2))+(5)/(8.12^(2))+(7)/(9.13^(2))+ …...

^7C_(7)+^(8)C_(7)+^(9)C_(7)+^(10)C_(7)...+^(20)C_(7)=21C_(8)2.^(21)C_(13)3. Neither 1 nor 2.4. Both 1 and 2

Solve (9x^(2) + 8xy-4)-(7x^(2) -2xy +2) .

MARVEL PUBLICATION-SEQUENCES AND SERIES -MULTIPLE CHOICE QUESTIONS
  1. 1.2+3.02+5.002+7.0002+ cdots to n terms =

    Text Solution

    |

  2. 1^(3)+2^(3)+3^(3)+ cdots +20^(3)=

    Text Solution

    |

  3. 7^(2)+8^(2)+9^(2)+...+20^(2)=

    Text Solution

    |

  4. 11^(2)+12^(2)+13^(2)+ cdots +32^(2)=

    Text Solution

    |

  5. Suppose that F(n +1) =( 2f(n)+1)/2 for n = 1, 2, 3,.....and f(1)= 2 ...

    Text Solution

    |

  6. If a, b, c, d, e, f are in А.Р., then e-c is equal to

    Text Solution

    |

  7. If the middle term amongst any odd number (n) consecutive terms of an ...

    Text Solution

    |

  8. The sum of all 2 digit odd numbers is

    Text Solution

    |

  9. The middle term of the progression 20,16,12, cdots , -176,-180 is (a)-...

    Text Solution

    |

  10. If the first and the last terms of an A.P. are -4 and 146 respectivel...

    Text Solution

    |

  11. The sum of an A.P. is 525. If its first term is 3 and the last term is...

    Text Solution

    |

  12. If the first term of an A.P. is 100 and the sum of its first 6 terms i...

    Text Solution

    |

  13. Sum of all two digit numbers which when divided by 4 yield unity as re...

    Text Solution

    |

  14. If the sum of any number of consecutive terms of a sequence is always ...

    Text Solution

    |

  15. If the sum of the first n terms of an A.P. is pn+qn^(2) then its commo...

    Text Solution

    |

  16. The sum of the series a-(a+d)+(a+2d)-(a+3d)+ up to (2n+1) terms is -n ...

    Text Solution

    |

  17. If Sn=n P+(n(n-1))/2Q ,w h e r eSn denotes the sum of the first n term...

    Text Solution

    |

  18. Four different integers form an increasing A.P .One of these numbers i...

    Text Solution

    |

  19. If in an A.P. {t(n)}, it is given that t(p)=q and t(q)=p then : t(p+q)...

    Text Solution

    |

  20. If in an A.P. {t(n)}, it is given that p.t(p)=q.t(q) then : t(p+q)= cd...

    Text Solution

    |