Home
Class 11
MATHS
IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then ...

IF `A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=`

A

`[(4,2,3),(-1,4,2),(1,2,1)]`

B

`[(-4,2,3),(-1,-4,2),(1,2,-1)]`

C

`[(-4,-1,1),( 2,-4,2),(3,2,-1)]`

D

`[(-1,-2,1),( 4,-2,-3),(1,4,-2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( (A^2 - 5A)A^{-1} \) where \( A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row, first column: \( 1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 1 = 1 - 2 + 3 = 2 \) - First row, second column: \( 1 \cdot 2 + 2 \cdot 1 + 3 \cdot 2 = 2 + 2 + 6 = 10 \) - First row, third column: \( 1 \cdot 3 + 2 \cdot 2 + 3 \cdot 4 = 3 + 4 + 12 = 19 \) - Second row, first column: \( -1 \cdot 1 + 1 \cdot (-1) + 2 \cdot 1 = -1 - 1 + 2 = 0 \) - Second row, second column: \( -1 \cdot 2 + 1 \cdot 1 + 2 \cdot 2 = -2 + 1 + 4 = 3 \) - Second row, third column: \( -1 \cdot 3 + 1 \cdot 2 + 2 \cdot 4 = -3 + 2 + 8 = 7 \) - Third row, first column: \( 1 \cdot 1 + 2 \cdot (-1) + 4 \cdot 1 = 1 - 2 + 4 = 3 \) - Third row, second column: \( 1 \cdot 2 + 2 \cdot 1 + 4 \cdot 2 = 2 + 2 + 8 = 12 \) - Third row, third column: \( 1 \cdot 3 + 2 \cdot 2 + 4 \cdot 4 = 3 + 4 + 16 = 23 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 10 & 19 \\ 0 & 3 & 7 \\ 3 & 12 & 23 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Now we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 & 15 \\ -5 & 5 & 10 \\ 5 & 10 & 20 \end{pmatrix} \] ### Step 3: Calculate \( A^2 - 5A \) Now we subtract \( 5A \) from \( A^2 \): \[ A^2 - 5A = \begin{pmatrix} 2 & 10 & 19 \\ 0 & 3 & 7 \\ 3 & 12 & 23 \end{pmatrix} - \begin{pmatrix} 5 & 10 & 15 \\ -5 & 5 & 10 \\ 5 & 10 & 20 \end{pmatrix} \] Calculating each element: - First row: \( 2 - 5 = -3, \quad 10 - 10 = 0, \quad 19 - 15 = 4 \) - Second row: \( 0 - (-5) = 5, \quad 3 - 5 = -2, \quad 7 - 10 = -3 \) - Third row: \( 3 - 5 = -2, \quad 12 - 10 = 2, \quad 23 - 20 = 3 \) Thus, \[ A^2 - 5A = \begin{pmatrix} -3 & 0 & 4 \\ 5 & -2 & -3 \\ -2 & 2 & 3 \end{pmatrix} \] ### Step 4: Calculate \( A^{-1} \) To find \( A^{-1} \), we can use the formula for the inverse of a 3x3 matrix. The determinant of \( A \) must be calculated first. \[ \text{det}(A) = 1(1 \cdot 4 - 2 \cdot 2) - 2(-1 \cdot 4 - 2 \cdot 1) + 3(-1 \cdot 2 - 1 \cdot 1) \] \[ = 1(4 - 4) - 2(-4 - 2) + 3(-2 - 1) \] \[ = 0 + 12 - 9 = 3 \] Now we can find the adjugate and then the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Calculating the adjugate involves finding the cofactors and transposing them. After calculating, we find: \[ A^{-1} = \frac{1}{3} \begin{pmatrix} 0 & -2 & 1 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix} \] ### Step 5: Calculate \( (A^2 - 5A)A^{-1} \) Now we multiply \( (A^2 - 5A) \) by \( A^{-1} \): \[ (A^2 - 5A)A^{-1} = \begin{pmatrix} -3 & 0 & 4 \\ 5 & -2 & -3 \\ -2 & 2 & 3 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 0 & -2 & 1 \\ 2 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix} \] Calculating this product will yield the final result. ### Final Result After performing the multiplication, we find: \[ (A^2 - 5A)A^{-1} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \] This simplifies to \( 4I \) where \( I \) is the identity matrix. ### Conclusion Thus, the final answer is: \[ (A^2 - 5A)A^{-1} = 4I \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2017

    MARVEL PUBLICATION|Exercise QUESTION|50 Videos
  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos

Similar Questions

Explore conceptually related problems

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

Given A=[{:(5,0,4),(2,3,2),(1,2,1):}] , B^(-1)=[{:(1,2,3),(1,4,3),(1,3,4):}] . Compute (AB)^(-1) .

If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),(5//2,-3//2,1//2)] , then the values of a and c are equal to

If A=[[1,1,2],[2,1,3],[5,4,9]] then find |A|

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

MARVEL PUBLICATION-QUESTION PAPER 2018-QUESTION
  1. IF y= ( tan ^(-1) x)^(2) " then " (x^(2) +1)^(2) (d^(2)y)/(dx^(2))...

    Text Solution

    |

  2. The line 5x +y-1=0 coincides with one of the lines given by ...

    Text Solution

    |

  3. IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

    Text Solution

    |

  4. The equation of line passing throufh (3,-1,2) and perpendicular ...

    Text Solution

    |

  5. Letters in the word HULULULU are rearranged . The probability o...

    Text Solution

    |

  6. The sum of the first 10 terms of the series 9+99+999 +….., is

    Text Solution

    |

  7. If A,B ,C are the angle of Delta ABC then cot A .cot B + c...

    Text Solution

    |

  8. IF (dx)/(sqrt(16-9x^(2)))=A sin^(-1) (bx )+c then A+B=

    Text Solution

    |

  9. int e^(x) [(2+sin 2x)/( 1+cos 2x )]dx =

    Text Solution

    |

  10. A coin is tossed three times .If X denotes the absolute diffe...

    Text Solution

    |

  11. IF 2 sin ( theta +(pi)/(3)) = cos (theta -(pi)/(6)), then ta...

    Text Solution

    |

  12. The area of the region bounded by x^(2) = 4y , y=1, y=4 and the...

    Text Solution

    |

  13. If f(x) =(e^(x^(2))-cos x)/(x^(2)), for x ne 0 is continous at ...

    Text Solution

    |

  14. The maximum value of 2x +y subject to 3x +5y le 26 and 5x +...

    Text Solution

    |

  15. IF bar a , bar b , bar c are mutually perpendicular vectors hav...

    Text Solution

    |

  16. IF points p( 4,5,x),Q (3,y,4) and R (5,8,0) are collinear , then ...

    Text Solution

    |

  17. IF the slope of one of the lines given by ax^(2) +2hxy + by...

    Text Solution

    |

  18. The equation of the line passing through the point (-3,1) and...

    Text Solution

    |

  19. The negation of the statement : Getting above 95% marks is n...

    Text Solution

    |

  20. cos 1^(@) ."" cos 2^(@) ."" cos 3^(@) "…." cos 179 ^(@)=

    Text Solution

    |