Home
Class 12
MATHS
int[(d)/(dx)f(x)]dx=...

`int[(d)/(dx)f(x)]dx=`

A

`f'(x)+c`

B

`f(x)+c`

C

`intf(x)dx`

D

`e^(f(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int_a^b[d/dx(f(x))]dx

Theorem: (d)/(dx)(int f(x)dx=f(x)

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

Statement 1: If differentiable function f(x) satisfies the relation 0AA x in R, and if f(x)+f(x-2)=0AA x in R, and if ((d)/(dx)f(x))_(x=a)=b, then ((d)/(dx)f(x))_(a+4000)=b Statement 2:f(x) is a periodic function with period 4.

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

If f(x) and g(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that (d)/(dx){f(x)+-g(x)}=(d)/(dx){f(x)}+-(d)/(dx){g(x)}

Using the first principle,prove that: (d)/(dx)(f(x)g(x))=f(x)(d)/(dx)(g(x))+g(x)(d)/(dx)(f(x))

Let f(x) be a differentiable and let c a be a constant.Then cf(x) is also differentiable such that (d)/(dx){cf(x)}=c(d)/(dx)(f(x))