Home
Class 12
MATHS
int(x+(1)/(x))^(2)dx=...

`int(x+(1)/(x))^(2)dx=`

A

`(x^(3))/(3)-(1)/(x)+2x+x`

B

`2x-(x^(3))/(3)-(1)/(x)+c`

C

`(x^(3))/(3)+(1)/(x)-2x+c`

D

`(x^(3))/(3)-2x-(1)/(x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( x + \frac{1}{x} \right)^2 dx \), we will follow these steps: ### Step 1: Expand the integrand First, we need to expand the expression \( \left( x + \frac{1}{x} \right)^2 \). \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 \cdot x \cdot \frac{1}{x} + \left( \frac{1}{x} \right)^2 \] \[ = x^2 + 2 + \frac{1}{x^2} \] ### Step 2: Rewrite the integral Now we can rewrite the integral using the expanded form: \[ \int \left( x^2 + 2 + \frac{1}{x^2} \right) dx \] ### Step 3: Split the integral We can split the integral into three separate integrals: \[ \int x^2 \, dx + \int 2 \, dx + \int \frac{1}{x^2} \, dx \] ### Step 4: Integrate each term Now we will integrate each term separately. 1. For \( \int x^2 \, dx \): \[ \int x^2 \, dx = \frac{x^3}{3} \] 2. For \( \int 2 \, dx \): \[ \int 2 \, dx = 2x \] 3. For \( \int \frac{1}{x^2} \, dx \): \[ \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = -\frac{1}{x} \] ### Step 5: Combine the results Now, we combine all the results from the integrations: \[ \frac{x^3}{3} + 2x - \frac{1}{x} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \left( x + \frac{1}{x} \right)^2 dx = \frac{x^3}{3} + 2x - \frac{1}{x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x-1)/(x+1)^(2)dx=

int(x+1)/(x^(2)+1)dx

int((1-x)/(1+x))^(2)dx" is equal to "

int(x^(2)-1)/(x^(2))dx

(i) int (1)/(x(x+1)^(2))dx (ii) int (1)/((x+1)^(2)(x-1))dx

int(x+1)/x^(1/2)dx=

int(2x)/(1-x^(2))dx

int(3x)/(1+x^(2))dx

int(3x)/(1+x^(2))dx

" "int(x+1)/((2x-3)^(2))dx