Home
Class 12
MATHS
If f(x)=(1)/(1-x), then int(f(f(f(x))))d...

If `f(x)=(1)/(1-x)`, then `int(f(f(f(x))))dx=`

A

`x+c`

B

`(x^(2))/(2)+c`

C

`(x^(3))/(3)+c`

D

`(x^(4))/(4)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of \( f(f(f(x))) \) where \( f(x) = \frac{1}{1-x} \). ### Step 1: Find \( f(f(x)) \) Given: \[ f(x) = \frac{1}{1-x} \] Now, we need to find \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{1}{1-x}\right) = \frac{1}{1 - \frac{1}{1-x}} \] To simplify this, we find a common denominator: \[ 1 - \frac{1}{1-x} = \frac{(1-x) - 1}{1-x} = \frac{-x}{1-x} \] Thus, \[ f(f(x)) = \frac{1}{\frac{-x}{1-x}} = -\frac{1-x}{x} = \frac{x-1}{x} \] ### Step 2: Find \( f(f(f(x))) \) Now, we compute \( f(f(f(x))) \): \[ f(f(f(x))) = f\left(\frac{x-1}{x}\right) = \frac{1}{1 - \frac{x-1}{x}} \] Again, simplifying: \[ 1 - \frac{x-1}{x} = \frac{x - (x-1)}{x} = \frac{1}{x} \] Thus, \[ f(f(f(x))) = \frac{1}{\frac{1}{x}} = x \] ### Step 3: Integrate \( f(f(f(x))) \) Now we need to integrate \( f(f(f(x))) \): \[ \int f(f(f(x))) \, dx = \int x \, dx \] Using the power rule for integration: \[ \int x \, dx = \frac{x^2}{2} + C \] ### Final Answer Thus, the final answer is: \[ \int f(f(f(x))) \, dx = \frac{x^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Evaluate: if int f(x)dx=g(x), then int f^(-1)(x)dx

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

If : x(x^(4)+1).f(x)=1 , then : int_(1)^(2)f(x)dx=

If f (x) = cos x then int(2(f(x))^(2)-1)(4(f(x))^(3)-3 f (x)) dx is equal to

int[f(x)+x.f'(x)]dx=

If int f(x)dx=g(x) then int f^(-1)(x)dx is

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f(x)+f(3-x)=0 ,then int_(0)^(3)1/(1+2^(f(x)))dx=