Home
Class 12
MATHS
int(x)/(2x+3)dx=...

`int(x)/(2x+3)dx=`

A

`(2)/(x)+(4)/(3)logx+c`

B

`(x)/(2)+(x^(2))/(6)+c`

C

`(x)/(2)-(3)/(4)log(2x+3)+c`

D

`(x)/(2)+(4)/(3)log(2x+3)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x}{2x+3} \, dx\), we can use a method of substitution and algebraic manipulation. Let's break it down step by step. ### Step 1: Rewrite the integrand We start by rewriting the integrand \(\frac{x}{2x+3}\) in a more manageable form. We can express \(x\) in terms of \(2x + 3\): \[ x = \frac{1}{2}(2x + 3) - \frac{3}{2} \] This allows us to rewrite the integral: \[ \int \frac{x}{2x+3} \, dx = \int \frac{\frac{1}{2}(2x + 3) - \frac{3}{2}}{2x + 3} \, dx \] ### Step 2: Simplify the integrand Now we can simplify the integrand: \[ \int \left( \frac{1}{2} - \frac{3/2}{2x + 3} \right) \, dx \] This separates into two integrals: \[ \int \frac{1}{2} \, dx - \frac{3}{2} \int \frac{1}{2x + 3} \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately. 1. The first integral: \[ \int \frac{1}{2} \, dx = \frac{1}{2} x \] 2. The second integral requires a simple substitution. The integral of \(\frac{1}{u}\) is \(\ln |u|\): \[ -\frac{3}{2} \int \frac{1}{2x + 3} \, dx = -\frac{3}{2} \cdot \frac{1}{2} \ln |2x + 3| = -\frac{3}{4} \ln |2x + 3| \] ### Step 4: Combine the results Now we combine the results of the two integrals: \[ \int \frac{x}{2x + 3} \, dx = \frac{1}{2} x - \frac{3}{4} \ln |2x + 3| + C \] where \(C\) is the constant of integration. ### Final Answer: Thus, the final answer is: \[ \int \frac{x}{2x + 3} \, dx = \frac{x}{2} - \frac{3}{4} \ln |2x + 3| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x)/(3-2x)dx

int(x-2)/(x+3)dx=

int(1-x)/(2x+3)dx

int(2x+3)/(x)dx=

verify that int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C

int(x+3)(2x+5)dx

int(x+1)^2(2x+3)dx

Evaluate int (x-2)/(3-x)dx

int(5x^2+2x+3)dx

int ((x+1)/(2x+3))dx