Home
Class 12
MATHS
int(x+1)sqrt(2x-1)dx=...

`int(x+1)sqrt(2x-1)dx=`

A

`(1)/(10)(2x-1)^(3//2)+(1)/(2)(2x-1)^(5//2)+c`

B

`(1)/(10)(2x-1)^(5//2)-(1)/(2)(2x-1)^(3//2)+c`

C

`(1)/(10)(x+1)^(5//2)+(1)/(2)(x+1)^(3//2)+c`

D

`(1)/(10)(x+1)^(5//2)+(1)/(2)(x+1)^(3//2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x + 1) \sqrt{2x - 1} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( y^2 = 2x - 1 \). Then, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(y^2) = 2 \implies 2y \frac{dy}{dx} = 2 \implies \frac{dy}{dx} = \frac{1}{y} \] Thus, we have: \[ dx = y \, dy \] Now, we can express \( x \) in terms of \( y \): \[ 2x = y^2 + 1 \implies x = \frac{y^2 + 1}{2} \] ### Step 2: Substitute in the Integral Now we substitute \( x \) and \( dx \) into the integral: \[ \int (x + 1) \sqrt{2x - 1} \, dx = \int \left( \frac{y^2 + 1}{2} + 1 \right) y \cdot y \, dy \] This simplifies to: \[ = \int \left( \frac{y^2 + 1 + 2}{2} \right) y^2 \, dy = \int \left( \frac{y^2 + 3}{2} \right) y^2 \, dy \] \[ = \frac{1}{2} \int (y^4 + 3y^2) \, dy \] ### Step 3: Integrate Now we integrate: \[ = \frac{1}{2} \left( \frac{y^5}{5} + \frac{3y^3}{3} \right) + C \] \[ = \frac{1}{2} \left( \frac{y^5}{5} + y^3 \right) + C \] \[ = \frac{y^5}{10} + \frac{y^3}{2} + C \] ### Step 4: Substitute Back Now we substitute back \( y = \sqrt{2x - 1} \): \[ = \frac{(\sqrt{2x - 1})^5}{10} + \frac{(\sqrt{2x - 1})^3}{2} + C \] \[ = \frac{(2x - 1)^{5/2}}{10} + \frac{(2x - 1)^{3/2}}{2} + C \] ### Final Answer Thus, the final result is: \[ \int (x + 1) \sqrt{2x - 1} \, dx = \frac{(2x - 1)^{5/2}}{10} + \frac{(2x - 1)^{3/2}}{2} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(3x+1)sqrt(2x-1)dx

Evaluate: int(x-1)/sqrt (x^2-1)dx

Knowledge Check

  • int(x^(2)+1)sqrt(x+1)dx is equal to

    A
    `((x+1)^(7//2))/(7)-2((x+1)^(5//2))/(5)+2((x+1)^(3//2))/(3)+C`
    B
    `2[((x+1)^(7//2))/(7)-2((x+1)^(5//2))/(5)+2((x+1)^(3//2))/(3)]+C`
    C
    `((x+1)^(7//2))/(5)-2((x+1)^(5//2))/(5)+5`
    D
    `((x+1)^(7//2))/(7)-3((x+1)^(5//2))/(5)+11(x+1)^(1//2)+C`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int(x+1)sqrt(x^(2)-x+1)dx

    Evaluate: int(x+1)sqrt(x^(2)+x+1)dx

    int(x+1)sqrt(x^(2)+x+1)dx

    Evaluate: int(x-1)/(sqrt(x^2-1))\ dx

    Evaluate the following integral: int_1^5x/(sqrt(2x-1))dx

    Evaluate: int(1)/((x+1)sqrt(x^(2)-1))dx

    Evaluate: int(1)/((x+1)sqrt(x^(2)-1))dx