Home
Class 12
MATHS
int((1+x)^(2))/(x(1+x^(2)))dx=...

`int((1+x)^(2))/(x(1+x^(2)))dx=`

A

`logx+c`

B

`(logx)(tan^(-1)x)+c`

C

`2logx+tan^(-1)x+c`

D

`logx+2tan^(-1)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(1+x)^2}{x(1+x^2)} \, dx \), we can follow these steps: ### Step 1: Expand the numerator First, we expand the numerator \( (1+x)^2 \): \[ (1+x)^2 = 1 + 2x + x^2 \] Thus, the integral becomes: \[ \int \frac{1 + 2x + x^2}{x(1+x^2)} \, dx \] ### Step 2: Split the integral Next, we can separate the integral into three parts: \[ \int \frac{1}{x(1+x^2)} \, dx + \int \frac{2x}{x(1+x^2)} \, dx + \int \frac{x^2}{x(1+x^2)} \, dx \] This simplifies to: \[ \int \frac{1}{x(1+x^2)} \, dx + \int \frac{2}{1+x^2} \, dx + \int \frac{x}{1+x^2} \, dx \] ### Step 3: Solve each integral separately 1. **First Integral**: \( \int \frac{1}{x(1+x^2)} \, dx \) We can use partial fraction decomposition: \[ \frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx + C}{1+x^2} \] Multiplying through by the denominator \( x(1+x^2) \) and solving for \( A, B, C \) gives: \[ 1 = A(1+x^2) + (Bx + C)x \] Setting \( x = 0 \) gives \( A = 1 \). By substituting other values or comparing coefficients, we find \( B = 0 \) and \( C = -1 \). Thus: \[ \frac{1}{x(1+x^2)} = \frac{1}{x} - \frac{1}{1+x^2} \] Therefore: \[ \int \frac{1}{x(1+x^2)} \, dx = \ln |x| - \tan^{-1}(x) \] 2. **Second Integral**: \( \int \frac{2}{1+x^2} \, dx \) This integral is straightforward: \[ \int \frac{2}{1+x^2} \, dx = 2 \tan^{-1}(x) \] 3. **Third Integral**: \( \int \frac{x}{1+x^2} \, dx \) We can use the substitution \( u = 1 + x^2 \), \( du = 2x \, dx \): \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \ln |1+x^2| \] ### Step 4: Combine the results Now, we can combine all the results: \[ \int \frac{(1+x)^2}{x(1+x^2)} \, dx = \left( \ln |x| - \tan^{-1}(x) \right) + 2 \tan^{-1}(x) + \frac{1}{2} \ln |1+x^2| + C \] This simplifies to: \[ \int \frac{(1+x)^2}{x(1+x^2)} \, dx = \ln |x| + \tan^{-1}(x) + \frac{1}{2} \ln |1+x^2| + C \] ### Final Answer \[ \int \frac{(1+x)^2}{x(1+x^2)} \, dx = \ln |x| + \tan^{-1}(x) + \frac{1}{2} \ln |1+x^2| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(3x^(2)+1)/(x(x^(2)+1))dx

int(x^(2)+1)/(x(x^(2)-1))dx=

Evaluate int(1+2x^(2))/(x^(2)(1+x^(2)))dx

int(1+2x^(2))/(x^(2)(1+x^(2)))dx

int((x+1)^(2))/(x(x^(2)+1))dx is equal to:

int(e^(x)(1-x)^(2))/((1+x)^(2))dx

int x sqrt((1-x^(2))/(1+x^(2)))dx

int x sqrt((1-x^(2))/(1+x^(2)))dx

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

int(x+sqrt(1-x^(2)))/(x.sqrt(1-x^(2)))dx=