Home
Class 12
MATHS
int((1-x)^(2))/(x(1+x^(2)))dx=...

`int((1-x)^(2))/(x(1+x^(2)))dx=`

A

`2logx-tan^(-1)x+c`

B

`logx-2tan^(-1)x+c`

C

`logx-tan^(-1)x+c`

D

`2logx-tan^(-1)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(1-x)^2}{x(1+x^2)} \, dx \), we can follow these steps: ### Step 1: Expand the numerator First, we expand the numerator \( (1-x)^2 \): \[ (1-x)^2 = 1 - 2x + x^2 \] Thus, the integral becomes: \[ \int \frac{1 - 2x + x^2}{x(1+x^2)} \, dx \] ### Step 2: Separate the integral Next, we can separate the integral into three parts: \[ \int \left( \frac{1}{x(1+x^2)} - \frac{2x}{x(1+x^2)} + \frac{x^2}{x(1+x^2)} \right) \, dx \] This simplifies to: \[ \int \left( \frac{1}{x(1+x^2)} - \frac{2}{1+x^2} + \frac{x}{1+x^2} \right) \, dx \] ### Step 3: Simplify each term Now we can integrate each term separately: 1. For \( \int \frac{1}{x(1+x^2)} \, dx \), we can use partial fraction decomposition. 2. The second term \( -2 \int \frac{1}{1+x^2} \, dx \) is a standard integral. 3. The third term \( \int \frac{x}{1+x^2} \, dx \) can be solved using substitution. ### Step 4: Solve the first term using partial fractions We can express: \[ \frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx + C}{1+x^2} \] Multiplying through by \( x(1+x^2) \) and solving for \( A, B, C \), we find: \[ 1 = A(1+x^2) + (Bx + C)x \] Setting up equations for coefficients gives us: - For \( x^0 \): \( A = 1 \) - For \( x^1 \): \( B = 0 \) - For \( x^2 \): \( A + C = 0 \) implies \( C = -1 \) Thus, we have: \[ \frac{1}{x(1+x^2)} = \frac{1}{x} - \frac{1}{1+x^2} \] ### Step 5: Integrate each term Now we can integrate: 1. \( \int \frac{1}{x} \, dx = \ln |x| \) 2. \( -2 \int \frac{1}{1+x^2} \, dx = -2 \tan^{-1}(x) \) 3. For \( \int \frac{x}{1+x^2} \, dx \), we can use the substitution \( u = 1+x^2 \), \( du = 2x \, dx \), leading to: \[ \frac{1}{2} \ln |1+x^2| \] ### Step 6: Combine results Combining all the results, we get: \[ \int \frac{(1-x)^2}{x(1+x^2)} \, dx = \ln |x| - \tan^{-1}(x) - \ln |1+x^2| + C \] ### Final Answer Thus, the final answer is: \[ \ln |x| - 2 \tan^{-1}(x) + \frac{1}{2} \ln |1+x^2| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(3x^(2)+1)/(x(x^(2)+1))dx

int(x^(2)+1)/(x(x^(2)-1))dx=

Evaluate int(1+2x^(2))/(x^(2)(1+x^(2)))dx

int(1+2x^(2))/(x^(2)(1+x^(2)))dx

int(e^(x)(1-x)^(2))/((1+x)^(2))dx

int((x+1)^(2))/(x(x^(2)+1))dx is equal to:

int x sqrt((1-x^(2))/(1+x^(2)))dx

int x sqrt((1-x^(2))/(1+x^(2)))dx

int(x+sqrt(1-x^(2)))/(x.sqrt(1-x^(2)))dx=

Evaluate :int(1-x^(2))/(x(1-2x))dx