Home
Class 12
MATHS
int((x^(3)+1)^(2))/(x^(2))dx=...

`int((x^(3)+1)^(2))/(x^(2))dx=`

A

`(x^(5))/(5)-x^(2)+(1)/(x)+c`

B

`x^(2)-(x^(5))/(5)+x+c`

C

`(x^(5))/(5)+x^(2)-(1)/(x)+c`

D

`tan^(-1)(x^(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{(x^3 + 1)^2}{x^2} \, dx\), we will follow these steps: ### Step 1: Expand the integrand First, we need to expand the expression \((x^3 + 1)^2\): \[ (x^3 + 1)^2 = x^6 + 2x^3 + 1 \] Thus, we can rewrite the integral as: \[ \int \frac{x^6 + 2x^3 + 1}{x^2} \, dx \] ### Step 2: Simplify the expression Now, we can separate the terms in the integrand: \[ \int \left( \frac{x^6}{x^2} + \frac{2x^3}{x^2} + \frac{1}{x^2} \right) \, dx = \int (x^4 + 2x + x^{-2}) \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately: 1. \(\int x^4 \, dx = \frac{x^5}{5}\) 2. \(\int 2x \, dx = 2 \cdot \frac{x^2}{2} = x^2\) 3. \(\int x^{-2} \, dx = -\frac{1}{x}\) Putting it all together, we have: \[ \int (x^4 + 2x + x^{-2}) \, dx = \frac{x^5}{5} + x^2 - \frac{1}{x} + C \] ### Final Answer Thus, the final answer is: \[ \frac{x^5}{5} + x^2 - \frac{1}{x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int((x^(3)-x-2))/((1-x^(2)))dx

int((x^(3)+1)(x-2))/(x^(2)-x-2)dx

I=int((x^(3)+1)(x-2))/(x^(2)-x-2)dx

int(3x^(2)+1)/(x(x^(2)+1))dx

int(3^(1//x))/(x^(2))dx=

int(2x^(3))/((x+1)(x-3)^(2))dx

int(x^(2)+1)/(x^(2)+2x-3)dx

I=int(x^(3)-x-1)/(x^(2)+2x+5)dx.

int_(0)^(3)(1)/(x^(2)-3x+2)dx