Home
Class 12
MATHS
int(cosx)/(sin^(2)x)dx=...

`int(cosx)/(sin^(2)x)dx=`

A

`secx`

B

`-cotx`

C

`tanx`

D

`cotx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos x}{\sin^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form: \[ \int \frac{\cos x}{\sin^2 x} \, dx = \int \cos x \cdot \frac{1}{\sin^2 x} \, dx \] ### Step 2: Recognize Trigonometric Identities We know that: \[ \frac{\cos x}{\sin x} = \cot x \quad \text{and} \quad \frac{1}{\sin x} = \csc x \] Thus, we can rewrite the integral as: \[ \int \cos x \cdot \csc^2 x \, dx \] ### Step 3: Use Substitution Now, we can use the substitution: \[ u = \sin x \quad \Rightarrow \quad du = \cos x \, dx \] This means that \(dx = \frac{du}{\cos x}\). Substituting in gives us: \[ \int \frac{\cos x}{\sin^2 x} \, dx = \int \frac{1}{u^2} \, du \] ### Step 4: Integrate Now we can integrate: \[ \int u^{-2} \, du = -\frac{1}{u} + C \] Substituting back \(u = \sin x\): \[ -\frac{1}{\sin x} + C = -\csc x + C \] ### Final Answer Thus, the final answer is: \[ -\csc x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(cosx)/(sin^(8)x)dx

int(cosx)/(4+sin^(2)x)*dx

int(cosx)/(4-sin^(2)x)*dx=

" 6."int(cosx)/(sin^(4)x)dx

I=int(cosx)/(sin^(6)x)dx

int(cosx)/(1+sin^2 x)dx

inte^(x)(sinx-cosx)/(sin^(2)x)dx=

int(cosx)/(sin^3 x)dx

int(cosx)/((1+sin^(2)x))dx

int(cosx)/(1+sin x)dx=?