Home
Class 12
MATHS
intcos x^(@)dx=...

`intcos x^(@)dx=`

A

`sinx^(@)`

B

`sinx`

C

`(180)/(pi)sin((pi)/(180)x)`

D

`(180)/(pi)sinx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos x^\circ \, dx \), we will follow these steps: ### Step 1: Convert Degrees to Radians Since the integral involves \( \cos x^\circ \), we need to convert the angle from degrees to radians. The conversion formula is: \[ \text{radians} = \frac{\pi}{180} \times \text{degrees} \] Thus, we can express \( x^\circ \) in radians as: \[ x^\circ = \frac{\pi}{180} x \] ### Step 2: Rewrite the Integral Now we can rewrite the integral using the radian measure: \[ \int \cos x^\circ \, dx = \int \cos\left(\frac{\pi}{180} x\right) \, dx \] ### Step 3: Perform the Integration To integrate \( \cos\left(\frac{\pi}{180} x\right) \), we use the formula for the integral of cosine: \[ \int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \] In our case, \( k = \frac{\pi}{180} \). Therefore, we have: \[ \int \cos\left(\frac{\pi}{180} x\right) \, dx = \frac{1}{\frac{\pi}{180}} \sin\left(\frac{\pi}{180} x\right) + C \] ### Step 4: Simplify the Result The reciprocal of \( \frac{\pi}{180} \) is \( \frac{180}{\pi} \). Thus, we can write: \[ \int \cos\left(\frac{\pi}{180} x\right) \, dx = \frac{180}{\pi} \sin\left(\frac{\pi}{180} x\right) + C \] ### Final Result The final result of the integration is: \[ \int \cos x^\circ \, dx = \frac{180}{\pi} \sin\left(\frac{\pi}{180} x\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

intcos^(-1)xdx=

intcos^(2)5x dx=

intcos^(2) x dx

intcos(2x+5)dx

intcos(5+6x)dx

Solve intcos^(4)xdx=int(cos^(2)x)^(2)dx

If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k , then

If intcos^(4)xdx=Ax +B sin 2x+C sin 4x+D , then {A,B,C} equals to

intcos(a-x)dx

intcos^-1(1/x)dx