Home
Class 12
MATHS
int(sin^(4)x-cos^(4)x)dx=...

`int(sin^(4)x-cos^(4)x)dx=`

A

`sinx-cosx`

B

`sinx.cosx+c`

C

`-sinx.cos x+c`

D

`cos 2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sin^4 x - \cos^4 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression \( \sin^4 x - \cos^4 x \) using the identity for the difference of squares: \[ \sin^4 x - \cos^4 x = (\sin^2 x)^2 - (\cos^2 x)^2 = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) \] ### Step 2: Simplify using the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 x + \cos^2 x = 1 \] Thus, we can simplify our expression: \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(1) = \sin^2 x - \cos^2 x \] ### Step 3: Substitute the expression into the integral Now we can substitute this back into the integral: \[ \int (\sin^4 x - \cos^4 x) \, dx = \int (\sin^2 x - \cos^2 x) \, dx \] ### Step 4: Use the double angle identity We can further simplify \( \sin^2 x - \cos^2 x \) using the double angle identity: \[ \sin^2 x - \cos^2 x = -\cos(2x) \] Thus, we have: \[ \int (\sin^2 x - \cos^2 x) \, dx = \int -\cos(2x) \, dx \] ### Step 5: Integrate the expression Now we can integrate: \[ \int -\cos(2x) \, dx = -\frac{1}{2} \sin(2x) + C \] where \( C \) is the constant of integration. ### Final Result Therefore, the final result of the integral is: \[ \int (\sin^4 x - \cos^4 x) \, dx = -\frac{1}{2} \sin(2x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(sin^(4)x+cos^(3)x)dx

int(sin^(4)x+cos^(3)x)dx

int(sin^(2)x)/(cos^(4)x)dx

int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx=

int(cos^(4)x-sin^(4)x)dx

int sin^(4)x*cos^(3)x*dx

Evaluate: int(1)/(sin^(4)x+cos^(4)x)dx

int(sin2x)/(sin^(4)x+cos^(4)x)dx

int(sin2x)/(sin^(4)x+cos^(4)x)dx

int_(0)^( pi)x(sin^(4)x cos^(4)x)dx