Home
Class 12
MATHS
int(cos2x)/(sin^(2)x.cos^(2)x)dx=...

`int(cos2x)/(sin^(2)x.cos^(2)x)dx=`

A

`tanx-cotx`

B

`cotx-tanx`

C

`tanx+cotx`

D

`-(tanx+cotx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite \( \cos 2x \) Using the trigonometric identity for cosine, we know that: \[ \cos 2x = \cos^2 x - \sin^2 x \] Thus, we can rewrite the integral as: \[ \int \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} \, dx \] ### Step 2: Separate the Integral Now, we can separate the integral into two parts: \[ \int \frac{\cos^2 x}{\sin^2 x \cos^2 x} \, dx - \int \frac{\sin^2 x}{\sin^2 x \cos^2 x} \, dx \] This simplifies to: \[ \int \frac{1}{\sin^2 x} \, dx - \int \frac{1}{\cos^2 x} \, dx \] ### Step 3: Rewrite the Integrals The integrals can be rewritten using the identities for cosecant and secant: \[ \int \csc^2 x \, dx - \int \sec^2 x \, dx \] ### Step 4: Integrate Now we can integrate each term: 1. The integral of \( \csc^2 x \) is \( -\cot x \). 2. The integral of \( \sec^2 x \) is \( \tan x \). Thus, we have: \[ -\cot x - \tan x + C \] where \( C \) is the constant of integration. ### Final Solution The final result of the integral is: \[ \int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx = -\cot x - \tan x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/(sin^(2)xcos^(2)x)dx=

int (cos 2x)/(sin^(2) x cos^(2)x) dx = ?

int(cos2x)/(sin x)dx

int(cos2x)/(cos^(2)x sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

int(cos2x)/((sin x+cos x)^(2))dx=

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

"int(sin^(2)x+cos^(2)x)/(sin^(2)x*cos^(2)x)dx