Home
Class 12
MATHS
int(1)/(cos2x+sin^(2)x)dx=...

`int(1)/(cos2x+sin^(2)x)dx=`

A

`sinx+c`

B

`cosx+c`

C

`tanx`

D

`cotx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\cos 2x + \sin^2 x} \, dx \), we will follow these steps: ### Step 1: Rewrite the expression We start with the integral: \[ \int \frac{1}{\cos 2x + \sin^2 x} \, dx \] We know that \( \cos 2x = \cos^2 x - \sin^2 x \). Therefore, we can rewrite the integral as: \[ \int \frac{1}{(\cos^2 x - \sin^2 x) + \sin^2 x} \, dx \] This simplifies to: \[ \int \frac{1}{\cos^2 x} \, dx \] ### Step 2: Simplify the integral The expression \( \frac{1}{\cos^2 x} \) can be rewritten as: \[ \sec^2 x \] Thus, our integral now becomes: \[ \int \sec^2 x \, dx \] ### Step 3: Integrate The integral of \( \sec^2 x \) is a standard integral: \[ \int \sec^2 x \, dx = \tan x + C \] where \( C \) is the constant of integration. ### Final Answer Putting it all together, we have: \[ \int \frac{1}{\cos 2x + \sin^2 x} \, dx = \tan x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(1)/(cos2x+3sin^(2)x)dx

Evaluate: int(1)/(cos2x+3sin^(2)x)dx

Knowledge Check

  • int(1)/(cos2x+sin2x)dx=

    A
    `(1)/(2sqrt2)log[(sqrt2-1+tanx)/(sqrt2+1-tanx)]+c`
    B
    `(1)/(2sqrt2)log[(sqrt2+1+tanx)/(sqrt2)]+c`
    C
    `(1)/(sqrt2)log[(sqrt2-1+tanx)/(sqrt2+1-tanx)]+c`
    D
    `(1)/(2sqrt2)tan^(-1)[(1-tanx)/(sqrt2)]+c`
  • Similar Questions

    Explore conceptually related problems

    int(1)/(cos^(2)x+sin2x)dx

    Evaluate: int(1)/(4cos^(2)x+9sin^(2)x)dx

    Evaluate: int(1)/(4cos^(2)x+9sin^(2)x)dx

    int(1-cos^2x)/(sin^2x)dx=?

    int(1+cos^2x)/(sin^2x)dx=?

    int(1+cos^(2)x)/(sin^(2)x)dx=

    int(1)/(cos^(2) x-3 sin^(2) x)dx