Home
Class 12
MATHS
intsin^(2)4xdx=...

`intsin^(2)4xdx=`

A

`(x)/(2)+(sin8x)/(16)+c`

B

`(x)/(2)-(sin8x)/(16)-c`

C

`cos^(2)4x+c`

D

`4sin8x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sin^2(4x) \, dx\), we can follow these steps: ### Step 1: Use the identity for \(\sin^2\) We can use the trigonometric identity: \[ \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \] In our case, \(\theta = 4x\), so: \[ \sin^2(4x) = \frac{1 - \cos(8x)}{2} \] ### Step 2: Substitute into the integral Now we can rewrite the integral: \[ \int \sin^2(4x) \, dx = \int \frac{1 - \cos(8x)}{2} \, dx \] This simplifies to: \[ \frac{1}{2} \int (1 - \cos(8x)) \, dx \] ### Step 3: Split the integral We can separate the integral into two parts: \[ \frac{1}{2} \left( \int 1 \, dx - \int \cos(8x) \, dx \right) \] ### Step 4: Integrate each part 1. The integral of \(1\) is simply \(x\): \[ \int 1 \, dx = x \] 2. The integral of \(\cos(8x)\) requires a substitution. The integral is: \[ \int \cos(8x) \, dx = \frac{\sin(8x)}{8} \] ### Step 5: Combine the results Now we can combine the results from the two integrals: \[ \frac{1}{2} \left( x - \frac{\sin(8x)}{8} \right) + C \] This simplifies to: \[ \frac{x}{2} - \frac{\sin(8x)}{16} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sin^2(4x) \, dx = \frac{x}{2} - \frac{\sin(8x)}{16} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

intsin^(3)xdx=?

intsin^(-1)xdx

intsin^(-1)xdx

Evaluate the following definite integrals underset(0)overset(pi//2)intsin^(2)xdx

intsin^3 2xdx

intsin^(2)xdx-(x)/(2)=

What is intsin^(2)xdx+intcos^(2)xdx equal to ?

Evaluate the following integrals: (i) intsin^(2)nxdx (ii) intsin^(5)xdx

If intsin^(4)xdx=ax+bsin2x+c sin 4x+d, then (a, b, c)-=

Evaluate the following integrals: (i) intsin^(2)xdx (ii) intcos^(2)xdx