Home
Class 12
MATHS
intsin^(2)x.cos^(2)xdx=...

`intsin^(2)x.cos^(2)xdx=`

A

`(x)/(8)+(sin4x)/(32)+c`

B

`-(x)/(8)-(sin4x)/(32)+c`

C

`(sin4x)/(32)-(x)/(8)+c`

D

`(x)/(8)-(sin4x)/(32)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^2 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sin^2 x \cos^2 x \, dx \] ### Step 2: Use the Trigonometric Identity We can use the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \) and \( \cos^2 x = \frac{1 + \cos(2x)}{2} \) to rewrite the integral: \[ I = \int \left(\frac{1 - \cos(2x)}{2}\right) \left(\frac{1 + \cos(2x)}{2}\right) \, dx \] ### Step 3: Simplify the Expression Now, we simplify the expression: \[ I = \int \frac{(1 - \cos(2x))(1 + \cos(2x))}{4} \, dx \] \[ = \int \frac{1 - \cos^2(2x)}{4} \, dx \] Using the identity \( \sin^2(2x) = 1 - \cos^2(2x) \): \[ I = \int \frac{\sin^2(2x)}{4} \, dx \] ### Step 4: Factor Out the Constant We can factor out the constant \( \frac{1}{4} \): \[ I = \frac{1}{4} \int \sin^2(2x) \, dx \] ### Step 5: Use the Identity for \( \sin^2 \) Using the identity \( \sin^2(2x) = \frac{1 - \cos(4x)}{2} \): \[ I = \frac{1}{4} \int \frac{1 - \cos(4x)}{2} \, dx \] \[ = \frac{1}{8} \int (1 - \cos(4x)) \, dx \] ### Step 6: Integrate Now we can integrate: \[ I = \frac{1}{8} \left( \int 1 \, dx - \int \cos(4x) \, dx \right) \] \[ = \frac{1}{8} \left( x - \frac{\sin(4x)}{4} \right) + C \] \[ = \frac{x}{8} - \frac{\sin(4x)}{32} + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{x}{8} - \frac{\sin(4x)}{32} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int sin^(2)x*cos^(2)xdx

intsin^(4)x cos^(3)xdx=

intsin^(3)xcos^(3)xdx=?

int sin^(2)x cos^(5)xdx

int sin^(5)x cos^(2)xdx

Evaluate: intsin^(4)xcos^(2)xdx

intsin^(3)x.cos^(2)xdx is equal to

Evaluate: (i) int sin^(2)xdx (ii) int cos^(2)xdx( iii )int sin^(2)x cos^(2)xdx

int x^(2)cos^(2)xdx

Evaluate intsin^(3)x cos^(2)x dx