Home
Class 12
MATHS
int(1)/(sin^(2)x.cos^(2)x)dx=...

`int(1)/(sin^(2)x.cos^(2)x)dx=`

A

`tanx+cotx`

B

`tanx-cotx`

C

`secx+tanx`

D

`2cot2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sin^2 x \cos^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = \int \frac{1}{\sin^2 x} \cdot \frac{1}{\cos^2 x} \, dx \] ### Step 2: Use Trigonometric Identities Recall that: \[ \frac{1}{\sin^2 x} = \csc^2 x \quad \text{and} \quad \frac{1}{\cos^2 x} = \sec^2 x \] Thus, we can rewrite the integral as: \[ \int \csc^2 x \sec^2 x \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int \csc^2 x \sec^2 x \, dx = \int \csc^2 x \, dx + \int \sec^2 x \, dx \] ### Step 4: Integrate Each Part Now we can integrate each part separately: 1. The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x + C_1 \] 2. The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x + C_2 \] ### Step 5: Combine the Results Combining the results from both integrals, we have: \[ \int \csc^2 x \sec^2 x \, dx = -\cot x + \tan x + C \] where \( C = C_1 + C_2 \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = -\cot x + \tan x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(1)/(16sin^(2)x+25cos^(2)x)dx=

Evaluate: int(1)/(1+3sin^(2)x+8cos^(2)x)dx

int(1)/(3sin^(2) x+4 cos^(2) x)dx

Evaluate: int(1)/(sin x(2cos^(2)x-1))dx

if int(1)/((sin x)(2cos^(2)x-1))dx=-(1)/(2)A-B then

int((sinx+cosx)(1-sinxcosx))/(sin^(2)x cos^(2)x)dx=

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int 1/(sin^2x cos^2x) dx