Home
Class 12
MATHS
int(secx+tanx)^(2)dx=...

`int(secx+tanx)^(2)dx=`

A

`x+secx+tanx`

B

`2(secx+tanx)-x`

C

`2(secx-tanx)+x`

D

`2(secx-tanx)+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sec x + \tan x)^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand First, we expand the expression \( (\sec x + \tan x)^2 \): \[ (\sec x + \tan x)^2 = \sec^2 x + 2 \sec x \tan x + \tan^2 x \] ### Step 2: Substitute \( \tan^2 x \) Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can rewrite the integral: \[ \sec^2 x + 2 \sec x \tan x + \tan^2 x = \sec^2 x + 2 \sec x \tan x + (\sec^2 x - 1) \] This simplifies to: \[ 2 \sec^2 x + 2 \sec x \tan x - 1 \] ### Step 3: Rewrite the integral Now, we can express the integral as: \[ \int (2 \sec^2 x + 2 \sec x \tan x - 1) \, dx \] ### Step 4: Split the integral We can split the integral into three separate integrals: \[ \int 2 \sec^2 x \, dx + \int 2 \sec x \tan x \, dx - \int 1 \, dx \] ### Step 5: Integrate each term 1. The integral of \( 2 \sec^2 x \): \[ \int 2 \sec^2 x \, dx = 2 \tan x \] 2. The integral of \( 2 \sec x \tan x \): \[ \int 2 \sec x \tan x \, dx = 2 \sec x \] 3. The integral of \( 1 \): \[ \int 1 \, dx = x \] ### Step 6: Combine the results Now, we combine all the results: \[ 2 \tan x + 2 \sec x - x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int (\sec x + \tan x)^2 \, dx = 2 \tan x + 2 \sec x - x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(secx+tanx)dx=

int(tanx-cotx)^(2)dx=

intsqrt(1+2tanx(secx+tanx))dx=

intsecx/(secx+tanx)dx

inte^(x)secx(1+tanx)dx=?

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int(3cotx - 2 tanx)^(2) dx

int tanx sec^(2)x*dx