Home
Class 12
MATHS
int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=...

`int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=`

A

`e^(x)tan(xe^(x))`

B

`e^(x)tan(xe^(-x))`

C

`-cot(xe^(x))`

D

`tan(xe^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^x(1+x)}{\cos^2(x e^x)} \, dx, \] we will use substitution and integration techniques. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = x e^x \). To differentiate \( t \), we apply the product rule: \[ dt = (e^x + x e^x) \, dx = e^x(1+x) \, dx. \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{e^x(1+x)}. \] ### Step 2: Rewrite the Integral Now, substituting \( t \) into the integral, we have: \[ \int \frac{e^x(1+x)}{\cos^2(t)} \cdot \frac{dt}{e^x(1+x)}. \] The \( e^x(1+x) \) in the numerator and denominator cancels out: \[ \int \frac{1}{\cos^2(t)} \, dt. \] ### Step 3: Recognize the Integral The integral \( \frac{1}{\cos^2(t)} \) is known to be: \[ \int \sec^2(t) \, dt = \tan(t) + C. \] ### Step 4: Back Substitute Now, we substitute back \( t = x e^x \): \[ \tan(t) = \tan(x e^x). \] Thus, the final answer is: \[ \tan(x e^x) + C. \] ### Final Solution The solution to the integral is: \[ \int \frac{e^x(1+x)}{\cos^2(x e^x)} \, dx = \tan(x e^x) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Find int(e^(x)(1+x))/(cos^(2)(xe^(2)))dx

int((x+1)e^(x))/(cos^(2)(xe^(x)))dx=?

Evaluate: int((x+1)e^(x))/(cos^(2)(xe^(x)))dx

What is the value of int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx ?

Evaluate: (i) int((x+1)e^(x))/(cos^(2)(xe^(x)))dx (ii) int x^(2)e^(x)-3cos(e^(x)-3)dx

Evaluate: (i) int(sin sqrt(x))/(sqrt(x))dx( ii) int((x+1)e^(x))/(sin^(2)(xe^(x)))dx

int((2x+1)e^(2x))/(sin^(2)(xe^(2x)))dx

int xe^(-x)dx

int_(-2)^(-1) sqrt(5+x)(sin^(-1)(e^(x))+cos^(-1)(e^(x)))dx