Home
Class 12
MATHS
int(1)/(1+e^(-x))dx=...

`int(1)/(1+e^(-x))dx=`

A

`x+log(1+e^(x))+c`

B

`log(1+e^(x))-c`

C

`-log(1+e^(-x))+e`

D

`x-e^(x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{1 + e^{-x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the integral: \[ \int \frac{1}{1 + e^{-x}} \, dx \] We can rewrite \( e^{-x} \) as \( \frac{1}{e^x} \): \[ \int \frac{1}{1 + \frac{1}{e^x}} \, dx = \int \frac{e^x}{e^x + 1} \, dx \] ### Step 2: Substitute Let \( t = e^x + 1 \). Then, the derivative \( dt = e^x \, dx \) or \( dx = \frac{dt}{e^x} \). Since \( e^x = t - 1 \), we can substitute: \[ dx = \frac{dt}{t - 1} \] Now, substituting into the integral gives: \[ \int \frac{e^x}{e^x + 1} \, dx = \int \frac{t - 1}{t} \cdot \frac{dt}{t - 1} = \int \frac{1}{t} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{t} \, dt \) is a standard integral: \[ \int \frac{1}{t} \, dt = \ln |t| + C \] ### Step 4: Back-substitute Now, we substitute back \( t = e^x + 1 \): \[ \ln |t| + C = \ln |e^x + 1| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{1 + e^{-x}} \, dx = \ln(e^x + 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Write a value of int(1)/(1+2e^(x))dx

Evaluate : int(1)/(e^(x)-1)dx

Evaluate: int(1)/(e^(x)+1)dx

int_(-1)^(1)e^(|x|)dx=2(e-1)

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to

Evaluate: (i) int(1)/(e^(x)+1)dx (ii) int(cot x)/(log sin x)dx

int_(-1)^(1)e^(|x|)dx

int_(0)^(oo)(1)/(1+e^(x))dx=