Home
Class 12
MATHS
int(tan^(-1)x)/(1+x^(2))dx=...

`int(tan^(-1)x)/(1+x^(2))dx=`

A

`log(tan^(-1)x)+c`

B

`0.5(tan^(-1)x)^(2)+c`

C

`log(1+x^(2))+c`

D

`tan^(-1)(logx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\tan^{-1} x}{1+x^2} \, dx \), we can use substitution. Here are the steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we differentiate both sides to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{1+x^2} \implies dx = (1+x^2) \, dt \] ### Step 2: Express \( x \) in terms of \( t \) From the substitution \( t = \tan^{-1} x \), we can express \( x \) as: \[ x = \tan t \] ### Step 3: Substitute into the integral Now we substitute \( t \) and \( dx \) into the integral: \[ \int \frac{\tan^{-1} x}{1+x^2} \, dx = \int \frac{t}{1+\tan^2 t} (1+\tan^2 t) \, dt \] Since \( 1 + \tan^2 t = \sec^2 t \), the integral simplifies to: \[ \int t \, dt \] ### Step 4: Integrate Now we can integrate: \[ \int t \, dt = \frac{t^2}{2} + C \] ### Step 5: Substitute back Now, substitute back \( t = \tan^{-1} x \): \[ \frac{(\tan^{-1} x)^2}{2} + C \] ### Final Answer Thus, the final result is: \[ \int \frac{\tan^{-1} x}{1+x^2} \, dx = \frac{(\tan^{-1} x)^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(tan^(-1)x)/(x^(2)+1)dx

int(m tan^(-1)x)/(1+x^(2))dx

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx

(i) int(1)/(sqrt(1-x^(2)).cos^(-1) x)dx (ii) int (sin(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate : int (sin (2 tan^(-1)x))/(1+x^(2))dx