Home
Class 12
MATHS
int(6x^(2)tan^(-1)(x^(3)))/(1+x^(6))dx=...

`int(6x^(2)tan^(-1)(x^(3)))/(1+x^(6))dx=`

A

`(tan^(-1)x^(3))^(2)+c`

B

`tan^(-2)(x^(3))+c`

C

`log(tan^(-1)x^(3))+c`

D

`tan^(-1)(logx)^(3)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)tan^(-1)(x^(3)))/(1+x^(6))dx

Evaluate: int(x^(2)tan^(-1)x^(3))/(1+x^(6))dx

Evaluate: int(x^(2)"tan"^(-1)x^(3))/(1+x^(6))dx

Evaluate: (i) int x^(3)sin x^(4)dx( ii) int e^(-x)cos ec^(2)(2e^(-x)+5)dx( iii) int x^(2)(tan^(-1)x^(3))/(1+x^(6))dx

Evaluate: int (x^2tan^(-1)x^3)/(1+x^6) dx

int(x^(2))/(1+x^(6)) dx

int(3x^(2))/(1+x^(6))dx

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int(3x^(2))/(x^(6)+1)dx

(3)int(tan^(-1)x)dx/(1+x^(2))