Home
Class 12
MATHS
if x=phi(t) and intf(x)dx=F(x) then intf...

if `x=phi(t)` and `intf(x)dx=F(x)` then `intf(phi(t))phi'(t)dt=` (A) `phi(x)` (B) `F(t)` (C) `F(x)` (D) `F^(')(x)`

A

`phi(x)`

B

`F(t)`

C

`F(x)`

D

`F'(x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

if x=phi(t) and int f(x)dx=F(x) then int f(phi(t))phi'(t)dt=(A)phi(x)(B)F(t)(C)F(x)(D)F'(x)

If intf(x)dx=f(x)+c," then " f(x)=

If phi(x)=f(x)+xf'(x) then int phi(x)dx is equal to

If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

If f(-x)+f(x)=0 then int_(a)^(x)f(t)dt is

If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

If f(x)=x^(3)-x and phi (x)= sin 2x , then

Let phi(x,t)={(x(t-1),xlet),(t(x-1), tltx):} , where t is a continuous function of x in [0,1] . Let g(x)=int_0^1 f(t)phi(x,t)dt , then g\'\'(x) = (A) g(0)=1 (B) g(0)=0 (C) g(1)=1 (D) g\'\'(x)=f(x)

int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is