Home
Class 12
MATHS
If intf(x)dx=F(x), then int(f(x))/(F'(x)...

If `intf(x)dx=F(x),` then `int(f(x))/(F'(x))dx=`

A

`x+c`

B

`logf(x)+c`

C

`logF(x)+c`

D

`e^(f(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{f(x)}{F'(x)} \, dx \) where \( F(x) = \int f(x) \, dx \), we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Definitions**: - We have \( F(x) = \int f(x) \, dx \). - By the Fundamental Theorem of Calculus, we know that \( F'(x) = f(x) \). 2. **Substitute \( F'(x) \)**: - Since \( F'(x) = f(x) \), we can rewrite the integral: \[ \int \frac{f(x)}{F'(x)} \, dx = \int \frac{f(x)}{f(x)} \, dx \] 3. **Simplify the Integral**: - The expression \( \frac{f(x)}{f(x)} \) simplifies to 1 (as long as \( f(x) \neq 0 \)): \[ \int 1 \, dx \] 4. **Integrate**: - The integral of 1 with respect to \( x \) is: \[ x + C \] where \( C \) is the constant of integration. 5. **Final Answer**: - Therefore, we conclude that: \[ \int \frac{f(x)}{F'(x)} \, dx = x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If intf(x)dx=f(x)+c," then " f(x)=

If int f(x)dx=psi(x), then int x^(5)f(x^(3))dx

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

Evaluate: if int f(x)dx=g(x), then int f^(-1)(x)dx

If int g(x)dx=f(x) , then : intf(x).g(x)dx=

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx is equal to