Home
Class 12
MATHS
intsqrt((1+sinx)/(1-sinx))dx=...

`intsqrt((1+sinx)/(1-sinx))dx=`

A

`tanx-secx+c`

B

`cosx+cotx+c`

C

`log[sin((pi)/(4)-(x)/(2))]+c`

D

`-log(1-sinx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{\frac{1 + \sin x}{1 - \sin x}} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sqrt{\frac{1 + \sin x}{1 - \sin x}} \, dx \] ### Step 2: Simplify the Expression We can simplify the expression under the square root: \[ \sqrt{\frac{1 + \sin x}{1 - \sin x}} = \frac{\sqrt{1 + \sin x}}{\sqrt{1 - \sin x}} \] ### Step 3: Multiply by a Conjugate To simplify further, we can multiply the numerator and the denominator by \(\sqrt{1 + \sin x}\): \[ \frac{\sqrt{1 + \sin x}}{\sqrt{1 - \sin x}} \cdot \frac{\sqrt{1 + \sin x}}{\sqrt{1 + \sin x}} = \frac{1 + \sin x}{\sqrt{(1 - \sin x)(1 + \sin x)}} \] This simplifies to: \[ \frac{1 + \sin x}{\sqrt{1 - \sin^2 x}} = \frac{1 + \sin x}{\cos x} \] ### Step 4: Rewrite the Integral Now we can rewrite our integral: \[ \int \frac{1 + \sin x}{\cos x} \, dx \] ### Step 5: Split the Integral We can split the integral into two parts: \[ \int \frac{1}{\cos x} \, dx + \int \frac{\sin x}{\cos x} \, dx \] This gives us: \[ \int \sec x \, dx + \int \tan x \, dx \] ### Step 6: Integrate Each Part Now we integrate each part: 1. The integral of \(\sec x\) is \(\ln |\sec x + \tan x| + C\). 2. The integral of \(\tan x\) is \(-\ln |\cos x| + C\). Combining these results, we have: \[ \int \sec x \, dx + \int \tan x \, dx = \ln |\sec x + \tan x| - \ln |\cos x| + C \] ### Step 7: Simplify the Result Using the properties of logarithms, we can combine the logarithms: \[ \ln \left(\frac{\sec x + \tan x}{\cos x}\right) + C \] ### Step 8: Further Simplification Since \(\sec x = \frac{1}{\cos x}\) and \(\tan x = \frac{\sin x}{\cos x}\), we can rewrite: \[ \frac{\sec x + \tan x}{\cos x} = \frac{\frac{1}{\cos x} + \frac{\sin x}{\cos x}}{\cos x} = \frac{1 + \sin x}{\cos^2 x} \] Thus, the final result is: \[ \ln \left(1 + \sin x\right) + C \] ### Final Answer The final answer is: \[ \int \sqrt{\frac{1 + \sin x}{1 - \sin x}} \, dx = \ln \left(1 - \sin x\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/((1-sinx))dx=?

intsqrt(1+sinx)dx

int ((1+ sinx))/((1- sinx)) dx=?

intx/(1+sinx)dx

int(sinx)/((1+sinx))dx=?

int(sinx)/((1+sinx))dx=?

intsqrt(1-sinx)dx=

intsqrt(1+sinx)dx=

int(1)/(1-sinx) dx