Home
Class 12
MATHS
int(1)/(sqrt(1+sinx))dx=...

`int(1)/(sqrt(1+sinx))dx=`

A

`(2)/(3)(1-sinx)^(3//2)+c`

B

`2[cos((x)/(2))-sin((x)/(2))]+c`

C

`-sqrt2log[tan((3pi)/(8)-(x)/(4))]+c`

D

`sqrt(x-cosx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sqrt{1 + \sin x}} \, dx \), we can use a trigonometric identity to simplify the expression. Here’s a step-by-step solution: ### Step 1: Use the Identity for \( \sin x \) We can use the identity \( 1 + \sin x = 1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \). This will help us rewrite the integral. ### Step 2: Rewrite the Integral Using the identity, we can express the integral as: \[ I = \int \frac{1}{\sqrt{1 + \sin x}} \, dx = \int \frac{1}{\sqrt{1 + 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}} \, dx \] ### Step 3: Use Half-Angle Substitution Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we have: \[ \sin x = \frac{2t}{1+t^2} \quad \text{and} \quad dx = \frac{2}{1+t^2} \, dt \] Substituting these into the integral gives: \[ I = \int \frac{2}{\sqrt{1 + \frac{2t}{1+t^2}}} \cdot \frac{1}{1+t^2} \, dt \] ### Step 4: Simplify the Integral Now simplify the expression under the square root: \[ 1 + \frac{2t}{1+t^2} = \frac{(1+t^2) + 2t}{1+t^2} = \frac{(1+t)^2}{1+t^2} \] Thus, we have: \[ \sqrt{1 + \sin x} = \sqrt{\frac{(1+t)^2}{1+t^2}} = \frac{1+t}{\sqrt{1+t^2}} \] Substituting this back into the integral gives: \[ I = \int \frac{2 \sqrt{1+t^2}}{1+t} \cdot \frac{1}{1+t^2} \, dt \] ### Step 5: Further Simplification This simplifies to: \[ I = \int \frac{2}{1+t} \, dt \] This integral can be solved easily. ### Step 6: Solve the Integral Now, we can integrate: \[ I = 2 \ln|1+t| + C \] Substituting back \( t = \tan\left(\frac{x}{2}\right) \): \[ I = 2 \ln\left|1 + \tan\left(\frac{x}{2}\right)\right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1}{\sqrt{1 + \sin x}} \, dx = 2 \ln\left|1 + \tan\left(\frac{x}{2}\right)\right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(cotx)/(sqrt(sinx))dx=

int(cosx)/(sqrt(1+sinx))dx is equal to

Evaluate : int(dx)/(sqrt(1-sinx))

Evaluate : int(sinx)/(sqrt(1+sinx))dx .

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

int(sinx)/((1+sinx))dx=?

int(sinx)/((1+sinx))dx=?

int(sinx)/((1-sinx))dx=?

int(1)/(sqrt(sinx cos^(3)x))dx=

int(tanx)/((1-sinx))dx