Home
Class 12
MATHS
If int(tan^(2)x+tan^(4)x)dx=((1)/(n))tan...

If `int(tan^(2)x+tan^(4)x)dx=((1)/(n))tan^(n)x+c,` then `n=`

A

2

B

3

C

4

D

6

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int(1+tan^2x)/(1-tan^2x)dx=

int(2tan x)/(1+tan^(2)x)dx

int(1+tan^(2)x+tan^(4)x+tan^(6)x)dx=

int(tan^(-1)x+x+tan^(-1)((1)/(x)))dx =

If =int(tan^(5)dx=Atan^(4)x-1/2tan^(2)x+B"ln"|secx|+C) then

If (d)/(dx)(tanx+(2)/(3)tan^(3)x+(1)/(5)tan^(5)x)=sec^nx," then "n=

int(1-tan x)/(1+tan x)dx

If (d)/(dx)(x-tanx+(1)/(3)tan^(3)x)=tan^(n)x," then "n=