Home
Class 12
MATHS
If inttan^(3)x sec^(3)xdx=((1)/(m))sec^(...

If `inttan^(3)x sec^(3)xdx=((1)/(m))sec^(m)x-((1)/(n))sec^(n)x+c,` then `(m, n)-=`

A

`(5, 3)`

B

`(3, 5)`

C

`((1)/(5),(1)/(3))`

D

`(4, 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^3 x \sec^3 x \, dx \) and express it in the form \( \frac{1}{m} \sec^m x - \frac{1}{n} \sec^n x + c \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \tan^3 x \) and \( \sec^3 x \): \[ \tan^3 x = \tan x \tan^2 x = \tan x (\sec^2 x - 1) \] \[ \sec^3 x = \sec x \sec^2 x \] Thus, we can express the integral as: \[ \int \tan^3 x \sec^3 x \, dx = \int \tan x (\sec^2 x - 1) \sec^3 x \, dx \] ### Step 2: Expand the integral Now, we can expand the integral: \[ \int \tan x \sec^3 x \sec^2 x \, dx - \int \tan x \sec^3 x \, dx \] ### Step 3: Use substitution Let \( u = \sec x \), then \( du = \sec x \tan x \, dx \). Therefore, we have: \[ \tan x \sec^3 x \, dx = u^3 \frac{du}{\sec x} = u^3 du \] Thus, the integral becomes: \[ \int u^3 \, du - \int u^3 \frac{du}{u} = \int u^4 \, du - \int u^2 \, du \] ### Step 4: Integrate Now we integrate: \[ \int u^4 \, du = \frac{u^5}{5} + C_1 \] \[ \int u^2 \, du = \frac{u^3}{3} + C_2 \] Putting it all together: \[ \int \tan^3 x \sec^3 x \, dx = \frac{u^5}{5} - \frac{u^3}{3} + C \] ### Step 5: Substitute back for \( u \) Now substitute back \( u = \sec x \): \[ = \frac{\sec^5 x}{5} - \frac{\sec^3 x}{3} + C \] ### Step 6: Identify \( m \) and \( n \) From the expression, we can identify: \[ m = 5, \quad n = 3 \] ### Final Answer Thus, the values of \( (m, n) \) are: \[ (m, n) = (5, 3) \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int tan^(m)x sec^(2)xdx

int(1+tan^(3)x)sec^(2)xdx=

If intsin^(4)x cos^(3)xdx=(1)/(m)sin^(m)x-(1)/(n)sin^(n)x+c then (m,n)-=

int x sin x sec^(3)xdx

int sec^(2)x cos^(3)xdx=

" () "int tan^(3)x*sec xdx

" (3) "int tan^(3)x*sec xdx

int x sec^(-1)xdx

int sec(tan x)*sec^(2)xdx

int sec^(4/3)x tan xdx