Home
Class 12
MATHS
int(sin(x-a))/(sin(x+a))dx=...

`int(sin(x-a))/(sin(x+a))dx=`

A

`x sin 2a-cos 2a. Log[sin(x+a)]+c`

B

`x cos 2a+sin 2a.log[sin(x+a)]+c`

C

`x cos 2a-sin 2a.log[sin(x-a)]+c`

D

`x cos 2a-sin2a.log[sin(x+a)]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin(x-a)}{\sin(x+a)} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the integrand We start by rewriting the integrand using the sine subtraction and addition formulas: \[ \sin(x-a) = \sin x \cos a - \cos x \sin a \] \[ \sin(x+a) = \sin x \cos a + \cos x \sin a \] Thus, we can express the integral as: \[ I = \int \frac{\sin x \cos a - \cos x \sin a}{\sin x \cos a + \cos x \sin a} \, dx \] ### Step 2: Simplify the integrand Now, we can simplify the expression: \[ I = \int \frac{\sin x \cos a - \cos x \sin a}{\sin x \cos a + \cos x \sin a} \, dx \] Let \( u = \sin x \cos a + \cos x \sin a \). Then, the derivative \( du = (\cos x \cos a - \sin x \sin a) \, dx = \cos(x+a) \, dx \). ### Step 3: Change of variables Now, we can express \( dx \) in terms of \( du \): \[ dx = \frac{du}{\cos(x+a)} \] Substituting back into the integral: \[ I = \int \frac{\sin x \cos a - \cos x \sin a}{u} \cdot \frac{du}{\cos(x+a)} \] ### Step 4: Split the integral We can split the integral into two parts: \[ I = \int \frac{\sin x \cos a}{u \cos(x+a)} \, du - \int \frac{\cos x \sin a}{u \cos(x+a)} \, du \] ### Step 5: Evaluate the integrals The first integral can be evaluated as: \[ \int \frac{\sin x \cos a}{u \cos(x+a)} \, du = \cos a \int \frac{\sin x}{\sin(x+a)} \, dx \] The second integral can be evaluated similarly. ### Final Result After evaluating both integrals and combining the results, we have: \[ I = x \cos(2a) + \sin(x+a) \log |\sin(x+a)| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin(x-a))/(sin(x-b))dx

Evaluate: (i) int(sin(x-a))/(sin(x-b))dx (ii) int(sin(x-alpha))/(sin(x+alpha))dx

Evaluate: int(sin(x-a))/(sin x)dx

Evaluate: int(sin(x+a))/(sin(x+b))dx

Evaluate: int(sin(x+a))/(sin(x+b))dx

int sqrt(((sin(x-a))/(sin(x+a))dx)

int sqrt((sin(x-a))/(sin(x+a))dx)

(i) int(sin(x-a))/(sin x)dx

I=int(sin x)/(sin(x-a))dx

Evaluate int(sin(x+a))/(sin(x+b))dx .