Home
Class 12
MATHS
int(cos (x-a))/(cos(x-b))dx=...

`int(cos (x-a))/(cos(x-b))dx=`

A

`xcos(a-b)+sin(b-a).log[sec(x-b)]+c`

B

`xsin(a-b)+cos(a-b).log[sec(x-b)]+c`

C

`xcos(a-b)+sin(a-b).log[sec(x-b)]+c`

D

`xcos(b-a)+sin(b-a).log[sec(x-b)]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos(x-a)}{\cos(x-b)} \, dx \), we will follow the steps outlined in the video transcript. ### Step-by-Step Solution: 1. **Rewrite the Numerator**: We start with the integral: \[ I = \int \frac{\cos(x-a)}{\cos(x-b)} \, dx \] We can rewrite \(\cos(x-a)\) using the angle addition formula: \[ \cos(x-a) = \cos(x-b + (b-a)) = \cos(x-b)\cos(b-a) + \sin(x-b)\sin(b-a) \] Thus, we have: \[ I = \int \frac{\cos(x-b)\cos(b-a) + \sin(x-b)\sin(b-a)}{\cos(x-b)} \, dx \] 2. **Split the Integral**: We can split the integral into two parts: \[ I = \int \cos(b-a) \, dx + \int \frac{\sin(x-b)\sin(b-a)}{\cos(x-b)} \, dx \] This simplifies to: \[ I = \cos(b-a) \int dx + \sin(b-a) \int \tan(x-b) \, dx \] 3. **Integrate Each Part**: - The first integral is straightforward: \[ \int dx = x \] - The second integral involves the tangent function: \[ \int \tan(x-b) \, dx = -\log|\cos(x-b)| + C \] 4. **Combine the Results**: Now, we can combine the results of the two integrals: \[ I = \cos(b-a) x + \sin(b-a) (-\log|\cos(x-b)|) + C \] This can be rewritten as: \[ I = x \cos(b-a) - \sin(b-a) \log|\cos(x-b)| + C \] 5. **Final Result**: Thus, the final result of the integral is: \[ I = x \cos(b-a) + \sin(b-a) \log|\sec(x-b)| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(sin(x+a))/(cos(x-b))dx=

int(cos(x-a))/(sin(x+b))dx=

int(cos(x-a))/(sin(x+b))dx

Evaluate : int(cos(x+a))/(cos(x-a))dx

int(cos(x+a)dx)/cos(x+b)

int(sin(x-a)dx)/cos(x-b)

int(cos(x-a))/(cos x)dx

int (cos(x+a))/(sin(x+b))dx

If int(k)/(cos(x-a)cos(x-b))dx=log[(cos(x-a))/(cos(x-b))]+c , then k=

I=int(cos(x-a))/(cos x)dx