Home
Class 12
MATHS
If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(...

If `int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c`, then `k=`

A

`sin(a-b)`

B

`cos(a-b)`

C

`tan(a-b)`

D

`sec(a-b)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the equation \[ \int \frac{k}{\sin(x-a) \cos(x-b)} \, dx = \log\left(\frac{\sin(x-a)}{\cos(x-b)}\right) + c, \] we will differentiate both sides with respect to \( x \). ### Step-by-Step Solution: 1. **Rearranging the Equation**: We start with the equation: \[ \int \frac{k}{\sin(x-a) \cos(x-b)} \, dx = \log(\sin(x-a)) - \log(\cos(x-b)) + c. \] 2. **Differentiating Both Sides**: We differentiate both sides with respect to \( x \): \[ \frac{d}{dx} \left( \int \frac{k}{\sin(x-a) \cos(x-b)} \, dx \right) = \frac{d}{dx} \left( \log(\sin(x-a)) - \log(\cos(x-b)) + c \right). \] By the Fundamental Theorem of Calculus, the left-hand side simplifies to: \[ \frac{k}{\sin(x-a) \cos(x-b)}. \] 3. **Differentiating the Right Side**: Using the chain rule, we differentiate the right-hand side: \[ \frac{d}{dx} \left( \log(\sin(x-a)) \right) = \frac{\cos(x-a)}{\sin(x-a)} \cdot \frac{d}{dx}(x-a) = \frac{\cos(x-a)}{\sin(x-a)}, \] and \[ \frac{d}{dx} \left( -\log(\cos(x-b)) \right) = -\frac{-\sin(x-b)}{\cos(x-b)} \cdot \frac{d}{dx}(x-b) = \frac{\sin(x-b)}{\cos(x-b)}. \] Thus, the right-hand side becomes: \[ \frac{\cos(x-a)}{\sin(x-a)} + \frac{\sin(x-b)}{\cos(x-b)}. \] 4. **Combining the Right Side**: We can combine the two fractions: \[ \frac{\cos(x-a) \cos(x-b) + \sin(x-b) \sin(x-a)}{\sin(x-a) \cos(x-b)}. \] 5. **Setting Both Sides Equal**: Now we have: \[ \frac{k}{\sin(x-a) \cos(x-b)} = \frac{\cos(x-a) \cos(x-b) + \sin(x-b) \sin(x-a)}{\sin(x-a) \cos(x-b)}. \] By multiplying both sides by \( \sin(x-a) \cos(x-b) \), we get: \[ k = \cos(x-a) \cos(x-b) + \sin(x-b) \sin(x-a). \] 6. **Using the Cosine Addition Formula**: The right-hand side can be simplified using the cosine addition formula: \[ k = \cos((x-a) - (x-b)) = \cos(b-a). \] ### Final Result: Thus, we find that: \[ k = \cos(a-b). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If int(k)/(sin(x-a)sin(x-b))dx=log[(sin(x-a))/(sin(x-b))]+c, then k=

If int(k)/(cos(x-a)cos(x-b))dx=log[(cos(x-a))/(cos(x-b))]+c , then k=

int(sin(x-a)dx)/cos(x-b)

int(sin(x+a))/(cos(x-b))dx=

int(dx)/(cos(x-a)sin(x-b))=

If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then

If int(1)/(sin(x-a)cos(x-a))dx=log[f(x)]+c , then f(x)=

If int(dx)/(cos(x-a)cos(x-b))=(1)/(A)[log((f(x))/(g(x)))]+c , then

int(cos(x-a))/(sin(x+b))dx=

int(cos(x-a))/(sin(x+b))dx