Home
Class 12
MATHS
int(1)/(5+4x-x^(2))dx=...

`int(1)/(5+4x-x^(2))dx=`

A

`(1)/(6)log[(x-1)/(x-5)]+c`

B

`(1)/(6)log[(x-5)/(x-1)]+c`

C

`(1)/(6)log[(1+x)/(x-5)]+c`

D

`(1)/(6)tan^(-1)[(x-5)/(x+1)]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{5 + 4x - x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator First, we rewrite the expression in the denominator: \[ 5 + 4x - x^2 = - (x^2 - 4x - 5) \] This allows us to factor the quadratic expression: \[ x^2 - 4x - 5 = (x - 5)(x + 1) \] Thus, we have: \[ 5 + 4x - x^2 = - (x - 5)(x + 1) \] ### Step 2: Set Up the Integral Now, we can rewrite the integral: \[ \int \frac{1}{5 + 4x - x^2} \, dx = -\int \frac{1}{(x - 5)(x + 1)} \, dx \] ### Step 3: Partial Fraction Decomposition Next, we will use partial fraction decomposition to break down the integrand: \[ \frac{1}{(x - 5)(x + 1)} = \frac{A}{x - 5} + \frac{B}{x + 1} \] Multiplying through by the denominator \((x - 5)(x + 1)\) gives: \[ 1 = A(x + 1) + B(x - 5) \] Expanding this, we have: \[ 1 = Ax + A + Bx - 5B = (A + B)x + (A - 5B) \] Setting coefficients equal, we get the system: 1. \( A + B = 0 \) 2. \( A - 5B = 1 \) ### Step 4: Solve for A and B From the first equation, we can express \( A \) in terms of \( B \): \[ A = -B \] Substituting into the second equation: \[ -B - 5B = 1 \implies -6B = 1 \implies B = -\frac{1}{6} \] Then substituting back to find \( A \): \[ A = -(-\frac{1}{6}) = \frac{1}{6} \] ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ -\int \left( \frac{1/6}{x - 5} - \frac{1/6}{x + 1} \right) \, dx = -\frac{1}{6} \int \frac{1}{x - 5} \, dx + \frac{1}{6} \int \frac{1}{x + 1} \, dx \] ### Step 6: Integrate Now we can integrate each term: \[ -\frac{1}{6} \ln |x - 5| + \frac{1}{6} \ln |x + 1| + C \] ### Step 7: Combine the Logarithms Using the properties of logarithms: \[ \frac{1}{6} \left( \ln |x + 1| - \ln |x - 5| \right) = \frac{1}{6} \ln \left| \frac{x + 1}{x - 5} \right| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{1}{5 + 4x - x^2} \, dx = \frac{1}{6} \ln \left| \frac{x + 1}{x - 5} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(4x^(2)-4x+5)dx

"int(x+3)/(5-4x+x^(2))dx

int(1)/(x^(2)(4x+5))dx=

int (1)/(4x+5x^(-11))dx

int(1)/(sqrt(5-4x-2x^(2)))dx

int((1)/(5+4x^(2))+a^(3x+2))dx=?

int_(2)^(5)(1)/(sqrt(5+4x-x^(2)))dx=

int(x)/(x^(2)+4x+5)dx

" (b) "int(dx)/(5+4x^(2))

int(x+1)/(x^(2)+4x+5)dx