Home
Class 12
MATHS
If int(cosx)/(9-cos^(2)x)dx=m.tan^(-1)[m...

If `int(cosx)/(9-cos^(2)x)dx=m.tan^(-1)[m.f(x)]+c,` then

A

`m=2sqrt2, f(x)=cosx`

B

`m=(1)/(2sqrt2), f(x)=sinx`

C

`m=(1)/(2)sqrt2, f(x)=cosx`

D

`m=2sqrt2, f(x)=sinx`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(cosx-cos^(2)x)dx=

int(1-cosx)cos^(2)x dx=

int(cosx)/(sqrt(cos2x))dx=

int(cos2x)/(cosx-sinx)dx=

int(cos2x)/(sinx+cosx)dx=

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

int (cos2x)/(cosx) dx=

int(sin^(m)x)/(cos^(m+2)x)dx=

If int(1)/(2+cos^(2)2x)dx=m tan^(-1)[sqrtn tan 2x]+c, then (m, n)-=

int (cosx-cos2x)/(1-cosx) dx