Home
Class 12
MATHS
int(1)/(3e^(x)+2e^(-x))dx=...

`int(1)/(3e^(x)+2e^(-x))dx=`

A

`(1)/(sqrt6)tan^(-1)[sqrt((3)/(2))e^(x)]+c`

B

`sqrt6tan^(-1)[(3e^(x))/(2)]+c`

C

`(1)/(sqrt6)tan^(-1)[sqrt((2)/(3))e^(x)]+c`

D

`6tan^(-1)(sqrt6e^(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{3e^x + 2e^{-x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the expression in the denominator: \[ 3e^x + 2e^{-x} = 3e^x + \frac{2}{e^x} \] Thus, we can rewrite the integral as: \[ \int \frac{1}{3e^x + 2e^{-x}} \, dx = \int \frac{e^x}{3e^{2x} + 2} \, dx \] ### Step 2: Substitution Let \( t = e^x \). Then, the differential \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). Substituting these into the integral gives: \[ \int \frac{t}{3t^2 + 2} \cdot \frac{dt}{t} = \int \frac{1}{3t^2 + 2} \, dt \] ### Step 3: Factor Out Constants Now we can factor out constants from the denominator: \[ \int \frac{1}{3(t^2 + \frac{2}{3})} \, dt = \frac{1}{3} \int \frac{1}{t^2 + \frac{2}{3}} \, dt \] ### Step 4: Recognize the Integral Form The integral \( \int \frac{1}{t^2 + a^2} \, dt \) has a known solution: \[ \int \frac{1}{t^2 + a^2} \, dt = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \] In our case, \( a^2 = \frac{2}{3} \) implies \( a = \sqrt{\frac{2}{3}} \). ### Step 5: Solve the Integral Now we can substitute \( a \) back into the integral: \[ \frac{1}{3} \cdot \frac{1}{\sqrt{\frac{2}{3}}} \tan^{-1} \left( \frac{t}{\sqrt{\frac{2}{3}}} \right) + C \] This simplifies to: \[ \frac{1}{3} \cdot \frac{\sqrt{3}}{\sqrt{2}} \tan^{-1} \left( \frac{t \sqrt{3}}{\sqrt{2}} \right) + C \] ### Step 6: Substitute Back for \( t \) Since \( t = e^x \): \[ \frac{\sqrt{3}}{3\sqrt{2}} \tan^{-1} \left( \frac{e^x \sqrt{3}}{\sqrt{2}} \right) + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{1}{3e^x + 2e^{-x}} \, dx = \frac{\sqrt{3}}{3\sqrt{2}} \tan^{-1} \left( \frac{e^x \sqrt{3}}{\sqrt{2}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(1+3e^(x)+2e^(2x))dx

int(dx)/(e^(x)+1-2e^(-x))=

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int(dx)/(e^(2x)-3e^(x))=

int(1)/((e^(x)+e^(-x))^(2))dx

int(1)/((e^(x)+e^(-x))^(2))dx=

int(3e^(x)-4)/(e^(x)+1)dx=

" 19."int(1)/((e^(x)-1)(e^(x)+3))dx

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int(e^(x)+2)/(e^(x)+1)dx