Home
Class 12
MATHS
If int(3x+2)/(2x^(2)+2x+1)dx = m log(2x^...

If `int(3x+2)/(2x^(2)+2x+1)dx = m log(2x^(2)+2x+1)+(1)/(2)tan^(-1)u+c`, then

A

`m=(3)/(4), u=x+(1)/(2)`

B

`m=(3)/(4),u=2x+1`

C

`m=(4)/(3),u=2x-1`

D

`m=-(3)/(4),u=x+(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(3x+1)/(2x^(2)+x-1)dx

int x ^(x ^(2)+1) (2ln x+1)dx

If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C , then

If int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m).(x-1)^(n)]+c then (m,n)-=

If int(1)/(cos^(2)x(1-4tan^(2)x))dx=K log|(1+2tan x)/(1-2tan x)|+c, then K=

int_(x)^(1)x ln(1+2x)dx

int ((2x^(e)+ 3)dx)/((x^(2) -1)(x^(2) + 4)) = k log ((x+1)/(x-1)) +k (tan^(-) ((x)/(2))) , then k equals :

int((log x)^(2)-log x+1)/(((log x)^(2)+1)^((3)/(2)))dx