Home
Class 12
MATHS
If int(3e^(x)+4e^(-x))/(5e^(x)+6e^(-x))=...

If `int(3e^(x)+4e^(-x))/(5e^(x)+6e^(-x))=ax+b log(5e^(2x)+6)+c,` then

A

`a=(2)/(3), b=-30`

B

`a=(3)/(2), b=(-1)/(30)`

C

`a=(2)/(3), b=(-1)/(30)`

D

`a=-(3)/(2), b=-30`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{3e^{x} + 4e^{-x}}{5e^{x} + 6e^{-x}} \, dx = ax + b \log(5e^{2x} + 6) + c, \] we will differentiate both sides and compare coefficients to find the values of \(a\) and \(b\). ### Step 1: Differentiate both sides Differentiating the left-hand side: \[ \frac{d}{dx} \left( \int \frac{3e^{x} + 4e^{-x}}{5e^{x} + 6e^{-x}} \, dx \right) = \frac{3e^{x} + 4e^{-x}}{5e^{x} + 6e^{-x}}. \] Now differentiate the right-hand side: \[ \frac{d}{dx} \left( ax + b \log(5e^{2x} + 6) + c \right) = a + b \cdot \frac{1}{5e^{2x} + 6} \cdot \frac{d}{dx}(5e^{2x} + 6). \] ### Step 2: Differentiate \(5e^{2x} + 6\) Using the chain rule: \[ \frac{d}{dx}(5e^{2x} + 6) = 5 \cdot 2e^{2x} = 10e^{2x}. \] So, we have: \[ \frac{d}{dx} \left( ax + b \log(5e^{2x} + 6) + c \right) = a + b \cdot \frac{10e^{2x}}{5e^{2x} + 6}. \] ### Step 3: Set the derivatives equal Equating the derivatives from both sides: \[ \frac{3e^{x} + 4e^{-x}}{5e^{x} + 6e^{-x}} = a + \frac{10be^{2x}}{5e^{2x} + 6}. \] ### Step 4: Find a common denominator To compare coefficients, we can rewrite the left-hand side: Let’s multiply the numerator and denominator of the left side by \(e^{x}\): \[ \frac{3e^{2x} + 4}{5e^{2x} + 6}. \] ### Step 5: Compare coefficients Now we can compare coefficients of \(e^{2x}\) and the constant terms: 1. Coefficient of \(e^{2x}\): From the left side: \(3\) From the right side: \(10b\) Thus, we have: \[ 10b = 3 \implies b = \frac{3}{10}. \] 2. Constant terms: From the left side: \(4\) From the right side: \(a \cdot (5e^{2x} + 6)\) evaluated at \(e^{2x} = 0\) gives \(6a\). Thus, we have: \[ 6a = 4 \implies a = \frac{4}{6} = \frac{2}{3}. \] ### Final Values Thus, we find: \[ a = \frac{2}{3}, \quad b = \frac{3}{10}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx

If int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(2x)-4)+C , then |4A|=

If int(3e^(x)-5e^(-1))/(4e^(x)+5e^(-x))dx=ax+b ln(4e^(x)+5e^(-x))+C, then a=-(1)/(8),b=(7)/(8)( b) a=(1)/(8),b=(7)/(8)a=-(1)/(8),b=-(7)/(8) (d) a=(1)/(8),b=-(7)/(8)

Evaluate: int(e^(3x)+e^(5x))/(e^(x)+e^(-x))dx

If int(2e^(x) +3e^(-x))/(4e^(x)+7e^(-x))dx=(1)/(14)(ux+v log_(e ) (4e^(x)+7e^(-x)))+C , where C is a constant of integration, then u+v is equal to ________.

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

int_( then )^( If )(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B ln(9e^(2x)-4)+C