Home
Class 12
MATHS
int(1)/((x+1)sqrt(x-1))dx=...

`int(1)/((x+1)sqrt(x-1))dx=`

A

`(1)/(2sqrt2)tan^(-1)((x-1)/(2))+c`

B

`sqrt2 tan^(-1)sqrt((x-1)/(2))+c`

C

`(1)/(2sqrt2)log(x+sqrt(x-1))+c`

D

`-sqrt2log(x+1+sqrt(x-1))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(x+1)\sqrt{x-1}} \, dx \), we will use a substitution method. ### Step-by-Step Solution: 1. **Substitution**: Let \( y^2 = x - 1 \). Then, we differentiate both sides to find \( dx \): \[ dx = 2y \, dy \] From the substitution, we can express \( x \) in terms of \( y \): \[ x = y^2 + 1 \] 2. **Rewrite the Integral**: Substitute \( x \) and \( dx \) into the integral: \[ \int \frac{1}{(y^2 + 1 + 1)\sqrt{y^2}} \cdot 2y \, dy = \int \frac{2y}{(y^2 + 2)y} \, dy \] This simplifies to: \[ \int \frac{2}{y^2 + 2} \, dy \] 3. **Factor Out Constants**: We can factor out the constant: \[ 2 \int \frac{1}{y^2 + 2} \, dy \] 4. **Recognize the Standard Integral**: The integral \( \int \frac{1}{y^2 + a^2} \, dy \) is known to be: \[ \frac{1}{a} \tan^{-1}\left(\frac{y}{a}\right) + C \] Here, \( a^2 = 2 \) implies \( a = \sqrt{2} \). 5. **Integrate**: Thus, we have: \[ 2 \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{y}{\sqrt{2}}\right) + C = \frac{2}{\sqrt{2}} \tan^{-1}\left(\frac{y}{\sqrt{2}}\right) + C \] Simplifying \( \frac{2}{\sqrt{2}} \) gives us \( \sqrt{2} \): \[ \sqrt{2} \tan^{-1}\left(\frac{y}{\sqrt{2}}\right) + C \] 6. **Back Substitute**: Recall that \( y = \sqrt{x - 1} \): \[ \sqrt{2} \tan^{-1}\left(\frac{\sqrt{x - 1}}{\sqrt{2}}\right) + C \] ### Final Answer: \[ \int \frac{1}{(x+1)\sqrt{x-1}} \, dx = \sqrt{2} \tan^{-1}\left(\frac{\sqrt{x - 1}}{\sqrt{2}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x sqrt(x-1))dx

int(dx)/((x+1)sqrt(x-1))=

I=int(1)/((x+1)sqrt(x^(2)-1))dx

Evaluate: int(1)/((x+1)sqrt(x^(2)-1))dx

Evaluate: int(1)/((x+1)sqrt(x^(2)-1))dx

int(1)/((x-1)sqrt(x^(2)-1))dx equals

int(dx)/((x-1)sqrt(x+1))=

Evaluate: int(1)/((x-1)sqrt(x^(2)+1))dx

int 1/((x^2-1) sqrt(x-1)) dx