Home
Class 12
MATHS
int(1)/(x^(2)-2x-3)dx=...

`int(1)/(x^(2)-2x-3)dx=`

A

`4log[(x-3)(x+1)]+c`

B

`(1)/(4)log[(x+1)/(x-3)]+c`

C

`(1)/(4)log[(x-3)/(x+1)]+c`

D

`(1)/(sqrt2)tan^(-1)[(x-1)/(sqrt2)]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^2 - 2x - 3} \, dx \), we will follow these steps: ### Step 1: Factor the denominator First, we need to factor the quadratic expression in the denominator: \[ x^2 - 2x - 3 = (x - 3)(x + 1) \] ### Step 2: Rewrite the integral Now, we can rewrite the integral using the factored form: \[ \int \frac{1}{(x - 3)(x + 1)} \, dx \] ### Step 3: Partial fraction decomposition Next, we will express the integrand as a sum of partial fractions: \[ \frac{1}{(x - 3)(x + 1)} = \frac{A}{x - 3} + \frac{B}{x + 1} \] To find \(A\) and \(B\), we multiply through by the denominator \((x - 3)(x + 1)\): \[ 1 = A(x + 1) + B(x - 3) \] ### Step 4: Solve for A and B Expanding the right-hand side: \[ 1 = Ax + A + Bx - 3B \] Combining like terms gives: \[ 1 = (A + B)x + (A - 3B) \] Setting the coefficients equal, we have the system of equations: 1. \(A + B = 0\) 2. \(A - 3B = 1\) From the first equation, we can express \(A\) in terms of \(B\): \[ A = -B \] Substituting into the second equation: \[ -B - 3B = 1 \implies -4B = 1 \implies B = -\frac{1}{4} \] Then substituting back to find \(A\): \[ A = -(-\frac{1}{4}) = \frac{1}{4} \] ### Step 5: Rewrite the integral Now we can rewrite the integral using the values of \(A\) and \(B\): \[ \int \left( \frac{1/4}{x - 3} - \frac{1/4}{x + 1} \right) \, dx \] ### Step 6: Integrate term by term Now we can integrate each term separately: \[ \frac{1}{4} \int \frac{1}{x - 3} \, dx - \frac{1}{4} \int \frac{1}{x + 1} \, dx \] The integrals are: \[ \frac{1}{4} \ln |x - 3| - \frac{1}{4} \ln |x + 1| + C \] ### Step 7: Combine the logarithms Using the properties of logarithms, we can combine the two logarithmic terms: \[ \frac{1}{4} \left( \ln |x - 3| - \ln |x + 1| \right) = \frac{1}{4} \ln \left| \frac{x - 3}{x + 1} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{x^2 - 2x - 3} \, dx = \frac{1}{4} \ln \left| \frac{x - 3}{x + 1} \right| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(x-1)/(x^(2)-2x-3)dx

int(1)/(2x^(2)+3x-4)dx

int(1)/(2x^(2)+5x+3)dx

int((x-1))/(x^(2)-2x+3)dx

int(1)/(x(2x-3)^(2))dx=

int((x+1))/((x^(2)+2x-3))dx

Evaluate : int (3x+1)/(2x^(2)-2x+3)dx

int(x^(2)+1)/(x^(2)+2x-3)dx

int1/x^(2)(2x+1)^(3)dx=

Evaluate: inte^x(1/x^2-2/x^3)dx