Home
Class 12
MATHS
If int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m...

If `int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m).(x-1)^(n)]+c` then `(m,n)-=`

A

`(12, -7)`

B

`(-12, 7)`

C

`(12, 7)`

D

`(-7, 12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{5x + 2}{x^2 - 3x + 2} \, dx = \log[(x - 2)^m (x - 1)^n] + C, \] we need to find the values of \(m\) and \(n\). ### Step 1: Factor the denominator First, we factor the denominator \(x^2 - 3x + 2\): \[ x^2 - 3x + 2 = (x - 2)(x - 1). \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{5x + 2}{(x - 2)(x - 1)} \, dx. \] ### Step 3: Perform partial fraction decomposition We express the integrand as a sum of partial fractions: \[ \frac{5x + 2}{(x - 2)(x - 1)} = \frac{A}{x - 2} + \frac{B}{x - 1}. \] Multiplying through by the denominator \((x - 2)(x - 1)\) gives: \[ 5x + 2 = A(x - 1) + B(x - 2). \] ### Step 4: Solve for \(A\) and \(B\) Expanding the right-hand side: \[ 5x + 2 = Ax - A + Bx - 2B = (A + B)x + (-A - 2B). \] Equating coefficients, we have: 1. \(A + B = 5\) (coefficient of \(x\)) 2. \(-A - 2B = 2\) (constant term) From the first equation, we can express \(A\) in terms of \(B\): \[ A = 5 - B. \] Substituting into the second equation: \[ -(5 - B) - 2B = 2 \implies -5 + B - 2B = 2 \implies -5 - B = 2 \implies B = -7. \] Now substituting \(B\) back to find \(A\): \[ A = 5 - (-7) = 12. \] ### Step 5: Rewrite the integral Now we can rewrite the integral: \[ \int \left( \frac{12}{x - 2} - \frac{7}{x - 1} \right) \, dx. \] ### Step 6: Integrate Integrating term by term: \[ \int \frac{12}{x - 2} \, dx - \int \frac{7}{x - 1} \, dx = 12 \log|x - 2| - 7 \log|x - 1| + C. \] ### Step 7: Combine logarithms Using properties of logarithms, we can combine the logs: \[ = \log \left( |(x - 2)^{12} (x - 1)^{-7}| \right) + C. \] ### Step 8: Identify \(m\) and \(n\) From the expression \(\log[(x - 2)^m (x - 1)^n]\), we see that: - \(m = 12\) - \(n = -7\) ### Final Answer Thus, the values of \(m\) and \(n\) are: \[ (m, n) = (12, -7). \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

int(5x-1)/(3x^2+x+2)dx=

int(2x^(n-1))/(x^(n)+3)dx

If int(2x+3)/(x^(2)-5x+6)dx =9log(x-3)-7log(x-2)+A, then A =

If int(1+x+x^(2))/(x^(2)+x^(3))dx=(a)/(x)+b.log(x+1)+c, then

int(x^(2))/((x^(2)-4)^(3/2))dx=log|x+sqrt(x^(2)-4)|+A+c then A=

int(x^(2))/((x^(2)-4)^(3/2))dx=log|x+sqrt(x^(2)-4)|+A+c then A=

int(x ln x)/((x^(2)-1)^((3)/(2)))dx

int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c