Home
Class 12
MATHS
If int(x^(2)+37)/(x^(4)-3x^(2)-28)dx=a l...

If `int(x^(2)+37)/(x^(4)-3x^(2)-28)dx=a log((x-sqrt7)/(x+sqrt7))+b tan^(-1)((x)/(2))+c,` then `(a, b)-=`

A

`((2)/(sqrt7),(2)/(3))`

B

`((sqrt7)/(2),(3)/(2))`

C

`((sqrt7)/(2),(-3)/(2))`

D

`((2)/(sqrt7),(-3)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(PART - B : Mastering The BEST)|327 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT-CET EXAM QUESTIONS)|13 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • LINE IN SPACE

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|44 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(x+4)/(x^(2)+5)dx = a log ((6)/(5))+b tan^(-1)((1)/(sqrt(5))) , then (a, b)-=

int(x^(2))/((x^(2)-4)^(3/2))dx=log|x+sqrt(x^(2)-4)|+A+c then A=

int(x^(2))/((x^(2)-4)^(3/2))dx=log|x+sqrt(x^(2)-4)|+A+c then A=

[int((x^(5)+x^(4)+4x^(3)+4x^(2)+4x+4))/((x^(2)+2)^(3))dx=A log|x^(2)+2|+(1)/(sqrt(2))tan^(-1)((x)/(B))+c" then "],[B^(1/A)" is equal to "]

int(1)/(sqrt(a^(2)+x^(2)))dx=log(x+sqrt(x^(2)+a^(2))+c

int(x^(2)+4x+4)/((x^(2)+5x+7)sqrt(x+2))dx

If int(x^(3)+4x^(2)-7x+5)/(x+2)dx=(x^(3))/(3)+ax^(2)-11x+b log(x+2)+c, then (a, b)-=

int((x-1)^(2))/(x^(4)+x^(2)+1)dx=(1)/(sqrt(a))tan^(-1)((x^(2)-1)/(x sqrt(3)))-(b)/(sqrt(a))tan^(-1)((2x^(2)+1)/(3))+ then a^(2)+b^(2) is

int(x+3)/(sqrt(7-6x-x^(2)))dx

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is